China manufacturer Hydraulic Parts Steel Spline Connect Coupling

Product Description

Model No;:YT-01
Materials: 40CR
Hardness:40-44HRC
surface treatment:nitriding
thickness:0.4-0.6mm

Please directly contant with factory if need more models or speical request

WHO IS HangZhou YOYE HYDRAULIC CO.,LTD ?  
HangZhou Yoye Hydraulic Co.,Ltd is a factually factory located in HangZhou China.we have advanced CNC milling machine, machining center and specialized design, manufacturing and quality control teams.                                           our products covers of various types hydraulic manifold blocks,power unit central blocks,subplate valves,cartridge valves,mini power unit ,hydraulics tanks and accessories.
we always persist in ‘customer satisfaction’ as our core content and provide our customers with products in high quality. 
You provide us a chance ,we feedback you a satisfaction!
 
WHY CHOOSE YOYE ?  
1.MOQ:1PC
2.OEM and ODM accept
3.Free samples provide
4.Mass production and cost optimization,hundrends of models for choice
5.High precision and low tolerance +-0.01mm
6.Individual control blocks are available from 1 piece to series
7.100% inspection before shipment
8.1 year warranty
 
HOW TO ENSURE THE FIRST ORDER SAFTY AND SATISFIED ?
we are joint in TRADE ASSURANCE on Made-in-China,you can place an order by trade assurance to ensure the quality and delivery on time .
otherwise,Made-In-China as the third party will pay any lose for you if there have any quality and delivery problems.
   
HOW TO CONTACT WITH US ?
HangZhou Yoye Hydraulic Co.Ltd
Add:No.68 Deli Road,Jiaochun Street,ZhenHai Distric,HangZhou.China
 
 
 
Web:nbyoye
 
 
OR SEND INQUIRY FROM HERE,WE WILL REPLY YOU IN 24 HOURS!

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings handle both angular and axial misalignments simultaneously?

Yes, hydraulic couplings are designed to handle both angular and axial misalignments simultaneously. These couplings have inherent flexibility in their design, allowing them to accommodate various types of misalignments between the driving and driven shafts.

Angular misalignment occurs when the axes of the two shafts are not collinear, resulting in an angle between them. Axial misalignment, on the other hand, refers to the offset between the two shafts along their axis. Hydraulic couplings can compensate for these misalignments without sacrificing their ability to transmit torque efficiently.

The design of hydraulic couplings typically includes features such as flexible elements, torsional flexibility, or a fluid medium that allows the coupling to absorb and compensate for misalignments. When misalignment occurs, the flexible elements or fluid within the coupling act as a buffer, transmitting torque smoothly and reducing stress on the connected components.

By accommodating both angular and axial misalignments, hydraulic couplings offer several advantages in various applications:

  • Reduced Wear: Hydraulic couplings’ ability to handle misalignments helps reduce wear and tear on the shafts, bearings, and other components, prolonging the life of the equipment.
  • Smooth Operation: The ability to compensate for misalignments results in smoother operation and reduced vibrations, contributing to overall system performance and precision.
  • Overload Protection: Hydraulic couplings can provide overload protection by allowing slippage when torque exceeds the coupling’s capacity, protecting the system from damage.
  • Shock Absorption: In systems subject to shock loads or sudden changes in torque, hydraulic couplings can absorb and dampen these shocks, preventing damage to the equipment.
  • Maintenance Reduction: By minimizing stress on the system components, hydraulic couplings can help reduce maintenance requirements and downtime.

It is important to note that the extent of misalignment accommodation may vary depending on the specific design and type of hydraulic coupling. Manufacturers provide guidelines and specifications for each coupling, including the maximum allowable misalignments.

Overall, hydraulic couplings’ ability to handle both angular and axial misalignments simultaneously makes them a versatile choice for various industrial applications where precision, efficiency, and reliable power transmission are essential.

hydraulic coupling

What are some real-world examples of successful hydraulic coupling installations and their benefits?

Hydraulic couplings have been successfully implemented in various real-world applications, offering significant benefits in terms of performance, efficiency, and reliability. Here are some examples of successful hydraulic coupling installations and the advantages they provided:

  • Construction Equipment: In the construction industry, hydraulic couplings are extensively used in excavators, loaders, bulldozers, and cranes. The flexibility and high torque transmission capability of hydraulic couplings ensure smooth and precise movements of heavy machinery, improving productivity and reducing wear on mechanical components. Additionally, the leak-free connections in hydraulic systems prevent fluid loss and environmental contamination.
  • Industrial Manufacturing: In manufacturing plants, hydraulic couplings are commonly found in various equipment like hydraulic presses, injection molding machines, and metal forming machinery. The instant response and controllability of hydraulic systems, enabled by high-quality couplings, allow precise positioning and repeatable operations, ensuring consistent product quality and reducing material waste.
  • Agricultural Machinery: Hydraulic couplings play a vital role in agricultural machinery, such as tractors, harvesters, and irrigation systems. The ability to handle varying loads and pressures in hydraulic couplings ensures efficient operation in different farming tasks. Moreover, the robustness and resistance to environmental factors contribute to the longevity and reliability of the agricultural equipment.
  • Mobile Equipment: Mobile hydraulic applications, including waste collection trucks, fire trucks, and utility service vehicles, benefit from hydraulic couplings’ compact design and versatility. Hydraulic systems with the right couplings offer precise control, even in confined spaces, making them suitable for diverse mobile operations.
  • Material Handling: Hydraulic couplings are integral to material handling equipment like forklifts, conveyor systems, and pallet stackers. The smooth acceleration and deceleration provided by hydraulic couplings improve safety and handling efficiency, allowing operators to maneuver heavy loads with ease.
  • Offshore and Marine: In offshore and marine applications, hydraulic couplings are used in cranes, winches, and other systems. The hermetically sealed magnetic couplings, for instance, prevent fluid leakage in critical marine environments, reducing maintenance costs and minimizing the risk of contamination in sensitive marine ecosystems.

The benefits of these successful hydraulic coupling installations include:

  • Improved Performance: Hydraulic couplings enable precise control and efficient power transmission, resulting in improved equipment performance and productivity.
  • Energy Efficiency: Hydraulic couplings with reduced pressure losses and optimized fluid flow contribute to energy savings, making hydraulic systems more environmentally friendly and cost-effective.
  • Enhanced Safety: The reliability and leak-free operation of hydraulic couplings increase operational safety, reducing the risk of accidents and equipment failures.
  • Extended Equipment Lifespan: Properly selected and maintained hydraulic couplings contribute to the longevity of hydraulic systems, reducing downtime and maintenance costs.
  • Environmental Protection: Hydraulic couplings, especially those with non-leak designs, help prevent fluid spills and reduce the impact of hydraulic systems on the environment.

These real-world examples illustrate the versatility and advantages of hydraulic couplings across different industries. The proper selection and installation of hydraulic couplings can significantly enhance the performance, efficiency, and reliability of various hydraulic systems, delivering long-term benefits for businesses and end-users alike.

hydraulic coupling

Are there specific pressure and temperature limits for different hydraulic coupling designs?

Yes, different hydraulic coupling designs have specific pressure and temperature limits, and these limits can vary based on the coupling type and construction materials. Here are some general considerations regarding pressure and temperature limits for common hydraulic coupling designs:

  • Jaw Couplings: Jaw couplings typically have a pressure rating ranging from 1000 psi to 5000 psi (6.9 MPa to 34.5 MPa) and can handle temperatures from -20°C to 120°C (-4°F to 248°F). These couplings are suitable for various industrial applications with moderate pressure and temperature requirements.
  • Disc Couplings: Disc couplings offer higher pressure and temperature capabilities compared to jaw couplings. Their pressure rating can range from 2000 psi to 6000 psi (13.8 MPa to 41.4 MPa), and they can handle temperatures between -50°C to 150°C (-58°F to 302°F). These couplings are commonly used in high-performance and precision equipment.
  • Fluid Couplings: Fluid couplings are suitable for applications requiring smooth start-ups and shock absorption. Their pressure limits can range from 150 psi to 3000 psi (1.03 MPa to 20.7 MPa), and they can handle temperatures from -40°C to 150°C (-40°F to 302°F). These couplings are often used in heavy machinery, such as conveyors and crushers.
  • Gear Couplings: Gear couplings have a higher pressure rating, typically ranging from 2500 psi to 8000 psi (17.2 MPa to 55.2 MPa), and can handle temperatures from -20°C to 150°C (-4°F to 302°F). These couplings are commonly used in heavy-duty industrial applications with high torque requirements.
  • Oldham Couplings: Oldham couplings have pressure limits ranging from 500 psi to 3000 psi (3.4 MPa to 20.7 MPa) and can handle temperatures between -30°C to 100°C (-22°F to 212°F). They are suitable for applications where shafts are not in perfect alignment.
  • Diaphragm Couplings: Diaphragm couplings offer high pressure and temperature capabilities. Their pressure rating can range from 3000 psi to 10000 psi (20.7 MPa to 68.9 MPa), and they can handle temperatures from -50°C to 200°C (-58°F to 392°F). These couplings are commonly used in high-speed and high-temperature applications like pumps and compressors.
  • Beam Couplings: Beam couplings typically have a pressure rating ranging from 1000 psi to 4000 psi (6.9 MPa to 27.6 MPa) and can handle temperatures between -40°C to 150°C (-40°F to 302°F). They are commonly used in precision equipment and motion control applications.

It’s essential to consult the manufacturer’s specifications and guidelines for each specific hydraulic coupling design to ensure it is suitable for the intended application’s pressure and temperature requirements. Using a coupling within its specified limits ensures safe and reliable operation and maximizes the performance and lifespan of the hydraulic system.

China manufacturer Hydraulic Parts Steel Spline Connect Coupling  China manufacturer Hydraulic Parts Steel Spline Connect Coupling
editor by CX 2023-12-26