China Standard CHINAMFG 1/2″ Flat Face Quick Connector Hydraulic Quick Coupler Non-Spill Coupling ISO16028

Product Description


ISO 16571 – NWP4 Series Quick Coupling (steel)


Product Feature

  1. Meet the standard ISO16571
  2. Push and pull connection
  3. With safe lock to avoid accidental disconnection
  4. Standard material: Carbon steel
  5. Standard seal: Nitrile rubber, fluoride rubber

Seal elastomer data
Seal Maximum working temperature range
Nitrile rubber -20ºC to +100ºC
Fluoride rubber -25ºC to +150ºC

Product Parameter

Max Working Pressure
Rated Flow
Min Blast Pressure
Fluid Loss
Connection Connection Male Female
1/4 6.3 400 12 1900 1900 1900 0.008
3/8 10 350 23 1600 1560 1780 0.01
1/2 12.5 350 45 1770 1700 1590 0.012
3/4 20 350 74 1580 1660 1420 0.015
1 25 350 100 1840 1600 1470 0.02
1-1/4 31.5 350 189 1530 1470 1400 0.03
1-1/2 40 230 288 800 700 320 0.05
2 50 150 379 600 600 280 0.1

Application Range

Hydraulic & fluid delivery
Building equipment
Agriculture machine
Multi purpose vehicle
Road vehicle
Fixed hydraulic equipment & fluid transport in factory


FASTER  2FFN/2FFI  series
PARKER  FEM  series
HANSEN  FF  series
AEROQUIP  FD89  series

Photo Details 


/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

How do hydraulic couplings contribute to reducing vibrations and noise in hydraulic systems?

Hydraulic couplings play a crucial role in reducing vibrations and noise in hydraulic systems, providing several mechanisms that help dampen and absorb these unwanted effects. Here’s how hydraulic couplings contribute to vibration and noise reduction:

  • Torsional Flexibility: Hydraulic couplings are designed with torsional flexibility, allowing them to twist and absorb torsional vibrations that may occur during operation. As the fluid flows through the coupling, it acts as a damping medium, attenuating vibrations and minimizing their transmission to the rest of the system.
  • Vibration Isolation: The inherent flexibility of hydraulic couplings helps isolate vibrations between the driving and driven components of the hydraulic system. This isolation prevents vibrations from propagating through the system, reducing the overall vibration levels and promoting smoother operation.
  • Shock Absorption: In systems subject to sudden changes in load or pressure, hydraulic couplings can act as shock absorbers. They cushion the impact of these shock loads, preventing them from reverberating through the system and causing noise or damage to sensitive components.
  • Damping Characteristics: Hydraulic couplings, especially those utilizing a hydraulic fluid medium, exhibit excellent damping characteristics. The fluid dissipates energy by converting kinetic energy into heat energy, effectively reducing the system’s resonant vibrations and noise.
  • Smooth Power Transmission: Hydraulic couplings provide smooth power transmission between the driving and driven elements. The absence of jerks or sudden changes in torque helps in minimizing vibrations and noise generation, leading to quieter operation.
  • Compensation for Misalignments: Hydraulic couplings can compensate for certain misalignments between the shafts they connect. By accommodating misalignments, the couplings reduce the stress on the system components, mitigating vibrations that might arise from misalignment-induced forces.
  • Elimination of Metal-to-Metal Contact: In certain couplings, the use of elastomeric or flexible elements eliminates direct metal-to-metal contact between the driving and driven shafts. This reduces transmission of vibrations and noise, resulting in a quieter system.

By incorporating these vibration and noise-reducing features, hydraulic couplings enhance the overall performance and longevity of hydraulic systems. They contribute to a more pleasant working environment by minimizing noise levels and reducing the risk of fatigue failure caused by excessive vibrations. Additionally, reduced vibrations help prevent premature wear and extend the lifespan of system components, ultimately leading to cost savings and improved efficiency in industrial applications.

hydraulic coupling

How do hydraulic couplings compare to other coupling types, such as mechanical or magnetic couplings?

Hydraulic couplings, mechanical couplings, and magnetic couplings are three distinct types of couplings used in various applications to transmit power between shafts. Each type of coupling offers specific advantages and limitations, making them suitable for different scenarios. Here’s a comparison of hydraulic couplings with mechanical and magnetic couplings:

  • Power Transmission:
    • Hydraulic Couplings: Hydraulic couplings transmit power using hydraulic fluid to transfer torque between connected shafts. They are well-suited for applications with varying torque demands, as the fluid medium can accommodate fluctuations and dampen shock loads.
    • Mechanical Couplings: Mechanical couplings directly connect the shafts through solid mechanical links, such as rigid couplings or flexible couplings (e.g., gear, jaw, or disc couplings). They efficiently transmit power without losses, making them suitable for high-torque applications.
    • Magnetic Couplings: Magnetic couplings use magnetic fields to transfer torque between shafts. They offer non-contact power transmission, which eliminates the need for mechanical seals, making them suitable for applications requiring hermetic sealing, such as pumps handling hazardous fluids.
  • Speed and Torque:
    • Hydraulic Couplings: Hydraulic couplings can accommodate variations in speed and torque within their design limits. They offer good torque-to-inertia ratio, enabling smooth acceleration and deceleration in hydraulic systems.
    • Mechanical Couplings: Mechanical couplings maintain precise shaft alignment and have high torque capacity. However, they may not handle speed variations as effectively as hydraulic couplings.
    • Magnetic Couplings: Magnetic couplings are not suitable for high-torque applications, but they offer excellent speed control and precise torque transmission without direct contact between shafts.
  • Maintenance and Wear:
    • Hydraulic Couplings: Hydraulic couplings may require periodic maintenance, such as seal replacements, to ensure proper operation. They experience wear due to fluid flow and pressure.
    • Mechanical Couplings: Mechanical couplings have mechanical wear and may require lubrication and maintenance to sustain optimal performance and prevent misalignment over time.
    • Magnetic Couplings: Magnetic couplings have minimal wear and require less maintenance due to their non-contact nature. They are less prone to mechanical failures but may require magnetic field adjustments.
  • Environmental Considerations:
    • Hydraulic Couplings: Hydraulic couplings may require hydraulic fluid, which must be properly managed and maintained. They can be susceptible to fluid leakage if not adequately sealed.
    • Mechanical Couplings: Mechanical couplings can generate friction and heat during operation, which may require cooling measures in high-speed applications.
    • Magnetic Couplings: Magnetic couplings are hermetically sealed, preventing fluid leakage and offering environmental advantages in applications where containment is critical.

The selection of the most appropriate coupling type depends on the specific requirements of the application, including torque, speed, environmental factors, maintenance considerations, and cost. Each coupling type offers unique features that cater to diverse industrial needs, making them valuable components in numerous mechanical systems.

hydraulic coupling

Are there specific pressure and temperature limits for different hydraulic coupling designs?

Yes, different hydraulic coupling designs have specific pressure and temperature limits, and these limits can vary based on the coupling type and construction materials. Here are some general considerations regarding pressure and temperature limits for common hydraulic coupling designs:

  • Jaw Couplings: Jaw couplings typically have a pressure rating ranging from 1000 psi to 5000 psi (6.9 MPa to 34.5 MPa) and can handle temperatures from -20°C to 120°C (-4°F to 248°F). These couplings are suitable for various industrial applications with moderate pressure and temperature requirements.
  • Disc Couplings: Disc couplings offer higher pressure and temperature capabilities compared to jaw couplings. Their pressure rating can range from 2000 psi to 6000 psi (13.8 MPa to 41.4 MPa), and they can handle temperatures between -50°C to 150°C (-58°F to 302°F). These couplings are commonly used in high-performance and precision equipment.
  • Fluid Couplings: Fluid couplings are suitable for applications requiring smooth start-ups and shock absorption. Their pressure limits can range from 150 psi to 3000 psi (1.03 MPa to 20.7 MPa), and they can handle temperatures from -40°C to 150°C (-40°F to 302°F). These couplings are often used in heavy machinery, such as conveyors and crushers.
  • Gear Couplings: Gear couplings have a higher pressure rating, typically ranging from 2500 psi to 8000 psi (17.2 MPa to 55.2 MPa), and can handle temperatures from -20°C to 150°C (-4°F to 302°F). These couplings are commonly used in heavy-duty industrial applications with high torque requirements.
  • Oldham Couplings: Oldham couplings have pressure limits ranging from 500 psi to 3000 psi (3.4 MPa to 20.7 MPa) and can handle temperatures between -30°C to 100°C (-22°F to 212°F). They are suitable for applications where shafts are not in perfect alignment.
  • Diaphragm Couplings: Diaphragm couplings offer high pressure and temperature capabilities. Their pressure rating can range from 3000 psi to 10000 psi (20.7 MPa to 68.9 MPa), and they can handle temperatures from -50°C to 200°C (-58°F to 392°F). These couplings are commonly used in high-speed and high-temperature applications like pumps and compressors.
  • Beam Couplings: Beam couplings typically have a pressure rating ranging from 1000 psi to 4000 psi (6.9 MPa to 27.6 MPa) and can handle temperatures between -40°C to 150°C (-40°F to 302°F). They are commonly used in precision equipment and motion control applications.

It’s essential to consult the manufacturer’s specifications and guidelines for each specific hydraulic coupling design to ensure it is suitable for the intended application’s pressure and temperature requirements. Using a coupling within its specified limits ensures safe and reliable operation and maximizes the performance and lifespan of the hydraulic system.

China Standard CHINAMFG 1/2China Standard CHINAMFG 1/2
editor by CX 2024-02-05