China Professional Lsq-FF Close Type Hydraulic Quick Coupling

Product Description

SongQiao LSQ-FF Series couplings are widely used in the public utility market where hydraulic oil spillage can constitute a serious safety hazard, particularly in overhead bucket hoists that are used for maintenance of high-voltage power transmission lines.These couplings are also used for quick change of hydraulic Tools in construction, railway maintenance and mining industries. The ease of cleaning makes them ideal for use in these types of hostile environments.
New valve design. it can resistance damage from high flow and the pressure of impulse that providing advanced performance.
Sleeve locking mechanism is engaged by rotating sleeve after connection. It prevents accidental disconnection when, The coupling is dragged along the ground.
Sleeve mechanism is designed to prevent dirt from entering the internal the internal mechanism and thus causing faulty operation when connecting or disconnecting. The sleeve covers the retaining ring and also incorporates a dust seal in the spring area.
Steel construction, zinc plated with yellow chromate finish.  hardened nipples and sleeves and CHINAMFG barstock construction for maximum resistance to damage from hydraulic and mechanical shock.
This Anti Blowout Nitrile/PTFE bonded seal is designed to prevent blow-out or damage during severe service conditions.
Durable ball-locking mechanism assures reliable connections ,every time. A large number of locking balls distributes the work load evenly while providing alignment and swiveling action to reduce hose torque and prolong hose life. CAUTION: These products are not not to be used as swivels. Rotation under pressure will result in excessive and premature wear.
LSQ-FF Series couplings employ flush valving when connecting or disconnecting. This means that the valves are mated together so that only small amounts of fluid can be lost during disconnection or air inclusion during reconnection.
New chrome plating treatment provides advanced anti-rust performance.
LSQ-FF series conforms to standard of ISO16571.
Compatible with CHINAMFG FE Series,FFSeries,STUCCHIA8008 Series, AEROQUIP FD89 Series and HANSENQA2900 Series.

ISO PART NO LS D HEX1 A T
6.3 LSQ-FF-02SF 58.2 28 20 14 G1/4 NPT1/4
10 LSQ-FF-03SF 68.2 32 24 14 G3/8 NPT3/8
10 LSQ-FF-03SF 72.2 32 27 18 G1/2 NPT1/2
12.5 LSQ-FF-04SF 75 38 32 18 G1/2 NPT1/2
12.5 LSQ-FF-04SF 79 38 36 22 G3/4 NPT3/4
16 LSQ-FF-06SF 80 42 36 22 G3/4 NPT3/4
19 LSQ-FF-08SF 99.8 48 41 22 G3/4 NPT3/4
19 LSQ-FF-08SF 99.8 48 41 23.5 G1    NPT1
25 LSQ-FF-10SF 111.5 56 55 24 G1-1/4 NPT1-1/4
LSQ-FF-12SF 150 79.5 65 30 G1-1/2 NPT1-1/2
LSQ-FF-16SF 167 98.5 85 31 G2    NPT2

ISO PART NO LP d C HEX2 A T
6.3 LSQ-FF-02PF 49.2  16.1 15.2 20 14 G1/4 NPT1/4
10 LSQ-FF-03PF 55.8  19.7 19.5 24 14 G3/8 NPT3/8
10 LSQ-FF-03PF 59.8  19.7 19.5 27 18 G1/2 NPT1/2
12.5 LSQ-FF-04PF 72  24.5 21.6 32 18 G1/2 NPT1/2
12.5 LSQ-FF-04PF 76  24.5 21.6 36 22 G3/4 NPT3/4
16 LSQ-FF-06PF 75.5  27 21.6 36 22 G3/4 NPT3/4
19 LSQ-FF-08PF 93.8  30 29 41 22 G3/4 NPT3/4
19 LSQ-FF-08PF 93.8  30 29 41 23.5 G1    NPT1
25 LSQ-FF-10PF  90  36 34 55 24 G1-1/4 NPT1-1/4
LSQ-FF-12PF  112  57 38 65 30 G1-1/2 NPT1-1/2
LSQ-FF-16PF  123.9  73 40.5 75 31 G2    NPT2

ISO PART NO L D HEX1 HEX2 T
6.3 LSQ-FF-02 96.2  28  20 20 G1/4 NPT1/4
10 LSQ-FF-03 108.4  32 24  24 G3/8 NPT3/8
10 LSQ-FF-03 116.4  32  27  27 G1/2 NPT1/2
12.5 LSQ-FF-04 129.3  38  32  32 G1/2 NPT1/2
12.5 LSQ-FF-04 137.3  38  36  36 G3/4 NPT3/4
16 LSQ-FF-06 138  42  36  36 G3/4 NPT3/4
19 LSQ-FF-08 172.1  48  41  41 G3/4 NPT3/4
19 LSQ-FF-08 172.1  48  41  41 G1    NPT1
25 LSQ-FF-10 178  56  55  55 G1-1/4 NPT1-1/4
LSQ-FF-12 233.4  79.5  65  65 G1-1/2 NPT1-1/2
LSQ-FF-16 251.7  98.5  85  75 G2    NPT2

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

How do hydraulic couplings contribute to reducing vibrations and noise in hydraulic systems?

Hydraulic couplings play a crucial role in reducing vibrations and noise in hydraulic systems, providing several mechanisms that help dampen and absorb these unwanted effects. Here’s how hydraulic couplings contribute to vibration and noise reduction:

  • Torsional Flexibility: Hydraulic couplings are designed with torsional flexibility, allowing them to twist and absorb torsional vibrations that may occur during operation. As the fluid flows through the coupling, it acts as a damping medium, attenuating vibrations and minimizing their transmission to the rest of the system.
  • Vibration Isolation: The inherent flexibility of hydraulic couplings helps isolate vibrations between the driving and driven components of the hydraulic system. This isolation prevents vibrations from propagating through the system, reducing the overall vibration levels and promoting smoother operation.
  • Shock Absorption: In systems subject to sudden changes in load or pressure, hydraulic couplings can act as shock absorbers. They cushion the impact of these shock loads, preventing them from reverberating through the system and causing noise or damage to sensitive components.
  • Damping Characteristics: Hydraulic couplings, especially those utilizing a hydraulic fluid medium, exhibit excellent damping characteristics. The fluid dissipates energy by converting kinetic energy into heat energy, effectively reducing the system’s resonant vibrations and noise.
  • Smooth Power Transmission: Hydraulic couplings provide smooth power transmission between the driving and driven elements. The absence of jerks or sudden changes in torque helps in minimizing vibrations and noise generation, leading to quieter operation.
  • Compensation for Misalignments: Hydraulic couplings can compensate for certain misalignments between the shafts they connect. By accommodating misalignments, the couplings reduce the stress on the system components, mitigating vibrations that might arise from misalignment-induced forces.
  • Elimination of Metal-to-Metal Contact: In certain couplings, the use of elastomeric or flexible elements eliminates direct metal-to-metal contact between the driving and driven shafts. This reduces transmission of vibrations and noise, resulting in a quieter system.

By incorporating these vibration and noise-reducing features, hydraulic couplings enhance the overall performance and longevity of hydraulic systems. They contribute to a more pleasant working environment by minimizing noise levels and reducing the risk of fatigue failure caused by excessive vibrations. Additionally, reduced vibrations help prevent premature wear and extend the lifespan of system components, ultimately leading to cost savings and improved efficiency in industrial applications.

hydraulic coupling

Can hydraulic couplings be retrofitted into existing hydraulic systems for improved performance?

Yes, hydraulic couplings can be retrofitted into existing hydraulic systems to enhance performance, improve reliability, and address specific system requirements. Retrofitting hydraulic couplings can be a cost-effective way to upgrade older systems without the need for extensive modifications or complete replacements.

Retrofitting hydraulic couplings may be beneficial for several reasons:

  • Improved Efficiency: Upgrading to modern hydraulic couplings with better design features can reduce energy losses and improve overall system efficiency. For example, switching from older, less efficient couplings to newer, more streamlined designs can optimize fluid flow and reduce pressure drop.
  • Leak Reduction: Older hydraulic systems may experience fluid leaks due to worn-out or damaged couplings. Retrofitting with new, high-quality couplings equipped with advanced sealing technologies can significantly reduce the risk of leaks, leading to better system reliability and environmental safety.
  • Higher Pressure and Flow Capabilities: Newer hydraulic couplings may offer higher pressure and flow ratings, allowing the system to handle increased demands or heavier loads. This can be crucial for applications that require more power and performance.
  • Material Compatibility: In some cases, existing hydraulic systems may have components made from materials that are not compatible with certain hydraulic fluids. Retrofitting with appropriate couplings can ensure compatibility and prevent corrosion or other fluid-related issues.
  • Space Constraints: Modern hydraulic couplings often come in more compact designs, which can be advantageous for systems with limited space. Retrofitting with smaller couplings may allow for better system integration and improved layout.
  • Environmental Compliance: Retrofitting hydraulic couplings can help align the system with current environmental regulations and industry standards, reducing the risk of potential fines or non-compliance issues.

Before retrofitting hydraulic couplings, careful evaluation of the existing system is necessary to ensure compatibility and identify specific areas for improvement. Factors such as thread type, size, pressure rating, flow capacity, and material compatibility must be considered to select the appropriate couplings for the retrofit.

It’s essential to consult with hydraulic coupling manufacturers or experienced fluid power professionals when planning a retrofit. They can provide guidance on suitable coupling options and recommend the necessary modifications or adjustments to optimize system performance.

In conclusion, retrofitting hydraulic couplings into existing hydraulic systems can be a viable solution for enhancing performance, reducing leaks, and achieving better overall efficiency and reliability. It allows businesses to leverage the latest advancements in hydraulic coupling technology to extend the lifespan and improve the functionality of their existing hydraulic systems.

hydraulic coupling

What are the different types of hydraulic couplings used in various industrial applications?

Hydraulic couplings come in various types and designs to suit different industrial applications. Some of the commonly used types include:

  1. Jaw Couplings: Jaw couplings are versatile and widely used in industrial machinery. They consist of two hubs with interlocking jaws that transmit torque between the shafts. These couplings provide good misalignment capacity and vibration damping.
  2. Disc Couplings: Disc couplings use a series of thin, flexible metal discs to transmit torque. They offer high torsional stiffness and can accommodate misalignments. They are commonly found in high-performance applications and precision equipment.
  3. Fluid Couplings: Fluid couplings use hydraulic fluid to transmit torque. They are suitable for applications requiring smooth start-ups and shock absorption. These couplings are often used in heavy machinery, such as conveyors and crushers.
  4. Gear Couplings: Gear couplings consist of gear teeth on the hubs that mesh with each other to transmit torque. They offer high torque capacity and can handle misalignments and shock loads. Gear couplings are commonly used in heavy-duty industrial applications.
  5. Oldham Couplings: Oldham couplings use a sliding disc in the middle to transmit torque. They provide high misalignment capacity and are used in applications where shafts are not in perfect alignment.
  6. Diaphragm Couplings: Diaphragm couplings use a thin metal diaphragm to transmit torque. They provide high torsional stiffness and can handle high speeds and misalignments. These couplings are used in applications like pumps and compressors.
  7. Beam Couplings: Beam couplings use helical cuts in a flexible beam to transmit torque. They are lightweight and have good misalignment capacity. Beam couplings are used in precision equipment and motion control applications.
  8. Universal Joints: While not a traditional hydraulic coupling, universal joints are used in fluid power transmission applications. They provide flexibility in transmitting torque at varying angles and are commonly found in drivetrains and automotive systems.

Each type of hydraulic coupling has its advantages and limitations, making them suitable for specific industrial applications based on factors like torque requirements, misalignment tolerance, and operating conditions. Proper selection and maintenance of hydraulic couplings are essential to ensure efficient power transmission and prolong the life of the machinery.

China Professional Lsq-FF Close Type Hydraulic Quick Coupling  China Professional Lsq-FF Close Type Hydraulic Quick Coupling
editor by CX 2024-04-03