China high quality China Factory Hydraulic Hose End Fittings and Couplings

Product Description

2 inch stainless steel hydraulic fittings for hydraulic hoses

Product Description:
1. Ferrule
Ferrule  for SAE100R1AT/EN 853 1SN HOSE
Ferrule  for SAE100R1A EN 853 1ST HOSE
Ferrule  for SAE100R2AT/DIN20571 2SN HOSE
Ferrule for SAE100R2A/EN853 2SN  HOSE
FERRULE  for SAE100R1AT-R2AT,EN853 1SN-2SN and EN 857 2SC
FERRULE  for 4SP, 4SH/10-16, R12/06-16 HOSE
FERRULE  for 4SH, R12/32 HOSE
 
2. Hose Fittings
1) Material: Carbon steel, Stainless steel
2) Finish: yellow Zinc plated, White Zinc Plated
3) Standards: SAE, JIC, BSP, NPT, DIN, etc

We are manufacturing and marketing all kinds of hydraulic fittings, we can also produce according to customers’ drawings or samples.

1)METRIC FITTINGS 2)BRITISH FITTINGS 3)AMERICAN FITTINGS
Metric Flat Seal Fittings   BSP O-RING Seal Fittings SAE O-RING Seal Fittings
Metric Multiseal Fittings BSP Flat Seal Fittings ORFS Flat Seal Fittings
Metric  60°Cone Seal Fittings BSP Multiseal Fittings  NPSM 60°Cone Seal Fittings
Metric  74°Cone Seal Fittings BSP 60°Cone Seal Fittings JIC 74°Cone Seal Fittings
Metric 24°Cone O-RING Seal L..T. Fittings  BSPT Fittings NPT Fittings
Metric Standpipe Straight Fittings  JIS BSP 60°Cone Seal Fittings SAE Flange L.T. Fittings
JIS Metric 60°Cone Seal Fittings   SAE  Flange  H.T. Fittings

Our Service: We can crimp hose assembly for our customers

Application:
Mainly used for construction equipment, hydraulic machinery, oil euipment and other hydraulic applications.


FAQ:
Conventional packaging: carton, can be customized according to customer needs;
Transportation: express, sea and air freight are support
Delivery Time:
1.If we have stock,we’ll send out to you in a week;
2. Generally, it will take about 20 days. The specific delivery date will be negotiated according to your order.
MOQ:100
(If the quantity you need is less than 100 pieces, please feel free to make an inquiry with us. If we have stock, you can also
order.)
Payment:LC/TT
 our payment  usual is T/T ,L/C ,if you need other payment , please inform us

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

How do hydraulic couplings contribute to reducing vibrations and noise in hydraulic systems?

Hydraulic couplings play a crucial role in reducing vibrations and noise in hydraulic systems, providing several mechanisms that help dampen and absorb these unwanted effects. Here’s how hydraulic couplings contribute to vibration and noise reduction:

  • Torsional Flexibility: Hydraulic couplings are designed with torsional flexibility, allowing them to twist and absorb torsional vibrations that may occur during operation. As the fluid flows through the coupling, it acts as a damping medium, attenuating vibrations and minimizing their transmission to the rest of the system.
  • Vibration Isolation: The inherent flexibility of hydraulic couplings helps isolate vibrations between the driving and driven components of the hydraulic system. This isolation prevents vibrations from propagating through the system, reducing the overall vibration levels and promoting smoother operation.
  • Shock Absorption: In systems subject to sudden changes in load or pressure, hydraulic couplings can act as shock absorbers. They cushion the impact of these shock loads, preventing them from reverberating through the system and causing noise or damage to sensitive components.
  • Damping Characteristics: Hydraulic couplings, especially those utilizing a hydraulic fluid medium, exhibit excellent damping characteristics. The fluid dissipates energy by converting kinetic energy into heat energy, effectively reducing the system’s resonant vibrations and noise.
  • Smooth Power Transmission: Hydraulic couplings provide smooth power transmission between the driving and driven elements. The absence of jerks or sudden changes in torque helps in minimizing vibrations and noise generation, leading to quieter operation.
  • Compensation for Misalignments: Hydraulic couplings can compensate for certain misalignments between the shafts they connect. By accommodating misalignments, the couplings reduce the stress on the system components, mitigating vibrations that might arise from misalignment-induced forces.
  • Elimination of Metal-to-Metal Contact: In certain couplings, the use of elastomeric or flexible elements eliminates direct metal-to-metal contact between the driving and driven shafts. This reduces transmission of vibrations and noise, resulting in a quieter system.

By incorporating these vibration and noise-reducing features, hydraulic couplings enhance the overall performance and longevity of hydraulic systems. They contribute to a more pleasant working environment by minimizing noise levels and reducing the risk of fatigue failure caused by excessive vibrations. Additionally, reduced vibrations help prevent premature wear and extend the lifespan of system components, ultimately leading to cost savings and improved efficiency in industrial applications.

hydraulic coupling

Are hydraulic couplings suitable for use in hydraulic cylinders or pumps?

Yes, hydraulic couplings are commonly used in hydraulic cylinders and pumps, playing a crucial role in connecting various components within hydraulic systems. Hydraulic cylinders and pumps are essential components in hydraulic systems, responsible for generating and controlling fluid power to perform mechanical work.

Hydraulic cylinders are actuators that convert fluid pressure into linear motion, producing force and movement. They are widely used in various applications, such as construction machinery, manufacturing equipment, agricultural machinery, and automotive systems.

Hydraulic pumps, on the other hand, are responsible for generating the fluid flow and pressure required to operate hydraulic systems. They provide the driving force that enables hydraulic cylinders and other actuators to perform their intended tasks.

Hydraulic couplings are used in hydraulic cylinders and pumps to connect hoses, tubes, and other hydraulic components. They ensure a secure and leak-free connection, allowing hydraulic fluid to flow between different parts of the system. Some common coupling types used in hydraulic cylinders and pumps include:

  • JIC Fittings: JIC (Joint Industry Council) fittings, which have a 37-degree flare angle, are commonly used in high-pressure hydraulic systems, including hydraulic cylinders and pumps. They provide reliable metal-to-metal sealing and are easy to assemble and disassemble.
  • ORFS Fittings: ORFS (O-Ring Face Seal) fittings are widely used in high-pressure hydraulic applications. They provide a robust and leak-free connection through an O-ring seal in the face of the fitting.
  • NPT Fittings: NPT (National Pipe Thread) fittings, with their tapered threads, are commonly used in lower-pressure hydraulic systems, providing a reliable seal with the use of thread sealants like Teflon tape.
  • BSP Fittings: BSP (British Standard Pipe) fittings, available in parallel (BSPP) and tapered (BSPT) threads, are widely used in European hydraulic systems.

Properly selected and installed hydraulic couplings ensure the integrity of the hydraulic system, allowing efficient and reliable power transmission between hydraulic cylinders, pumps, valves, and other components. When using hydraulic couplings in hydraulic cylinders and pumps, it’s essential to consider factors such as the required pressure rating, flow capacity, material compatibility, and environmental conditions to ensure optimal performance and safety.

In summary, hydraulic couplings are essential components in hydraulic systems, making them well-suited for use in hydraulic cylinders and pumps, where they facilitate fluid flow and help maintain the integrity of the overall hydraulic system.

hydraulic coupling

Can you explain the working principle of a hydraulic coupling and its advantages over other coupling types?

A hydraulic coupling operates based on the principle of hydraulic fluid transmission to transfer power from one shaft to another. It consists of two main parts: the input (driving) element and the output (driven) element, both of which have specially designed vanes or blades submerged in hydraulic fluid.

When the input element rotates, it creates a flow of hydraulic fluid around the vanes. The fluid flow generates pressure on the output element, causing it to start rotating. This pressure difference between the input and output elements facilitates the transfer of torque and power from the driving shaft to the driven shaft.

The working principle of a hydraulic coupling allows it to accommodate misalignments and torsional vibrations. It effectively isolates shock loads, provides overload protection, and dampens vibrations, making it ideal for various industrial applications.

Advantages of hydraulic couplings over other coupling types include:

  1. Misalignment Tolerance: Hydraulic couplings can handle significant shaft misalignments, reducing wear and tear on the system and prolonging the life of the components. Other coupling types may have limitations in this regard.
  2. Vibration Damping: Hydraulic couplings can effectively dampen vibrations, preventing damage to connected equipment and promoting smoother operation. This advantage is especially critical in precision machinery and applications where vibrations can affect accuracy and performance.
  3. Overload Protection: Hydraulic couplings offer built-in overload protection. When the torque exceeds a certain threshold, the fluid coupling slips or disengages, preventing damage to the system and its components. Other coupling types may not have this automatic overload protection.
  4. Smooth Start-up: Hydraulic couplings provide gradual power transmission during start-up, which helps minimize shock and stress on the system. This feature is beneficial for systems with heavy loads or delicate components.
  5. Quiet Operation: Due to their vibration-damping properties, hydraulic couplings contribute to quieter operation, reducing noise levels in the machinery compared to some other coupling types.
  6. Wide Range of Applications: Hydraulic couplings are suitable for a wide range of industrial applications, including heavy machinery, mining equipment, conveyors, pumps, and more. Their adaptability and robust performance make them a popular choice in various industries.

While hydraulic couplings offer many advantages, the selection of the appropriate coupling type ultimately depends on the specific requirements of the application, such as torque, speed, misalignment, and environmental conditions. Properly choosing and maintaining the coupling can significantly improve the efficiency, reliability, and overall performance of fluid power transmission systems in industrial settings.

China high quality China Factory Hydraulic Hose End Fittings and Couplings  China high quality China Factory Hydraulic Hose End Fittings and Couplings
editor by CX 2024-05-06