Tag Archives: hydraulic bucket

China factory Bucket Couplings for Excavator Bucket Hydraulic Quick Connector Sk200

Product Description

HEADLINE Bucket Couplings for Excavator bucket hydraulic quick connector sk200
PART NAME Hook Excavator
PART NUMBER HGWF2018 / Customized
MATERIAL Q345B, 40Cr.
FEATURES 1/ OEM, according to customer’s demand, can match most Brands machines
2/ High steel toughness and good CHINAMFG resistance for hard environment.
3/ Multi-purpose and easy for operating.
4/ High Standard components and parts. 
PRODUCT APPLICATION Machinery Repair Shops, Manufacturing Plant, Farms, Construction works ,
Energy & Mining.
MANUFACTURING PROCESS Fabrication Welding.
MOQ 1 set (It is able to provide a few samples first time)
PACKAGE Pallet or Wooden case.
PAYMENT TERM T/T, Western Union.
DELIEVERY TIME Within 7 workdays according to your order.
TRANSPORTATION DHL/FEDEX/UPS/TNT/ARAMEX, AIR & SEA

  CHINAMFG always persist in the principle of “Integrity Based, Customers Top”, giving great care to the overall processes such as from production, quoting, purchasing to packing and transporting. What we are pursuing is not just profit margin, but rather a lasting CHINAMFG partnership with you. Our professional team serve to customers from all over the worlds. We adhere to the concept of “Quality first, create the best” is increasing the value to customers and partners. Our key advantage over other is our attitude toward quality. We know what′s right, and not what just good enough. This is reflected in our quick response, technical analyze of drawings, proactive approach in passing on our production experience to help clients reduce cost and improve designs. In Foreign Trade Department we also cooperate with the best and most experienced factories with approved ISO 9001 in China. We work closely with these factories to offer quick delivery and quality service to our customers. We can help you stock a parts warehouse with quality factory parts for dealer service after the sale. If you are a distributor or dealer, please ask about our program to help build a parts warehouse for your company. CHINAMFG have a close relationship with these factories and can supply mixed product shipping if necessary. 

Hiugong’s Cooperated Brands include: XCMG, Sany, Zoomlion, Liugong, Lonking, Shantui, XGMA, Sunward, Lovol, Sem, Yuchai, Xihu (West Lake) Dis.n, Weichai, SDLG, YTO. Caterpillar, KOMATSU, HITACHI, CHINAMFG Construction Equipment, Liebherr, DOOSAN, John Deere, JCB, Terex, Sandvik, Wirtgen, Kobelco, Hyundai.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

What materials, such as steel or brass, are commonly used in manufacturing hydraulic couplings?

Hydraulic couplings are manufactured using a variety of materials, and the choice of material depends on the specific application requirements and the operating conditions of the hydraulic system. Some common materials used in manufacturing hydraulic couplings include:

  • Steel: Steel is one of the most widely used materials for hydraulic couplings due to its excellent strength, durability, and resistance to wear and corrosion. Carbon steel, stainless steel, and alloy steel are commonly used to manufacture hydraulic couplings for a wide range of applications.
  • Brass: Brass is another popular material for hydraulic couplings, especially in low-pressure and non-corrosive environments. Brass couplings offer good conductivity and are commonly used in fluid systems that require electrical grounding.
  • Aluminum: Aluminum couplings are lightweight and have good corrosion resistance. They are often used in applications where weight reduction is critical, such as aerospace and marine industries.
  • Cast Iron: Cast iron couplings provide high strength and durability, making them suitable for heavy-duty industrial applications with higher pressures and temperatures.
  • Stainless Steel: Stainless steel couplings are preferred for applications where resistance to corrosion and chemical exposure is essential. They are commonly used in the food and pharmaceutical industries.
  • Plastics: Some hydraulic couplings are made from various plastics, such as polypropylene or nylon. Plastic couplings are lightweight, corrosion-resistant, and suitable for low-pressure applications.
  • Bronze: Bronze couplings offer good corrosion resistance and are commonly used in marine and offshore applications.
  • Titanium: Titanium couplings are used in specialized applications where high strength and corrosion resistance are required, such as in the chemical and petrochemical industries.

Each material has its advantages and limitations, and the selection of the appropriate material depends on factors such as the operating pressure, temperature, chemical compatibility, weight requirements, and cost considerations of the specific hydraulic system.

Manufacturers of hydraulic couplings provide detailed specifications and material options for their products, enabling users to choose the most suitable coupling material for their application needs.

hydraulic coupling

Are hydraulic couplings suitable for use in hydraulic cylinders or pumps?

Yes, hydraulic couplings are commonly used in hydraulic cylinders and pumps, playing a crucial role in connecting various components within hydraulic systems. Hydraulic cylinders and pumps are essential components in hydraulic systems, responsible for generating and controlling fluid power to perform mechanical work.

Hydraulic cylinders are actuators that convert fluid pressure into linear motion, producing force and movement. They are widely used in various applications, such as construction machinery, manufacturing equipment, agricultural machinery, and automotive systems.

Hydraulic pumps, on the other hand, are responsible for generating the fluid flow and pressure required to operate hydraulic systems. They provide the driving force that enables hydraulic cylinders and other actuators to perform their intended tasks.

Hydraulic couplings are used in hydraulic cylinders and pumps to connect hoses, tubes, and other hydraulic components. They ensure a secure and leak-free connection, allowing hydraulic fluid to flow between different parts of the system. Some common coupling types used in hydraulic cylinders and pumps include:

  • JIC Fittings: JIC (Joint Industry Council) fittings, which have a 37-degree flare angle, are commonly used in high-pressure hydraulic systems, including hydraulic cylinders and pumps. They provide reliable metal-to-metal sealing and are easy to assemble and disassemble.
  • ORFS Fittings: ORFS (O-Ring Face Seal) fittings are widely used in high-pressure hydraulic applications. They provide a robust and leak-free connection through an O-ring seal in the face of the fitting.
  • NPT Fittings: NPT (National Pipe Thread) fittings, with their tapered threads, are commonly used in lower-pressure hydraulic systems, providing a reliable seal with the use of thread sealants like Teflon tape.
  • BSP Fittings: BSP (British Standard Pipe) fittings, available in parallel (BSPP) and tapered (BSPT) threads, are widely used in European hydraulic systems.

Properly selected and installed hydraulic couplings ensure the integrity of the hydraulic system, allowing efficient and reliable power transmission between hydraulic cylinders, pumps, valves, and other components. When using hydraulic couplings in hydraulic cylinders and pumps, it’s essential to consider factors such as the required pressure rating, flow capacity, material compatibility, and environmental conditions to ensure optimal performance and safety.

In summary, hydraulic couplings are essential components in hydraulic systems, making them well-suited for use in hydraulic cylinders and pumps, where they facilitate fluid flow and help maintain the integrity of the overall hydraulic system.

hydraulic coupling

How do hydraulic couplings accommodate misalignment and prevent overload during operation?

Hydraulic couplings are designed to accommodate misalignment and prevent overload during operation, ensuring smooth and efficient power transmission. Here’s how they achieve this:

  1. Misalignment Accommodation: Hydraulic couplings can handle different types of misalignment between the driving and driven shafts. This includes angular misalignment, radial misalignment, and axial misalignment. The design of the coupling allows it to flex and compensate for these misalignments, reducing stress on the system components and preventing premature wear.
  2. Torsional Flexibility: Hydraulic couplings offer torsional flexibility, which means they can twist and absorb torsional vibrations that may occur during operation. This capability helps to dampen vibrations and reduce the impact of shock loads on the system, enhancing the overall performance and protecting sensitive components.
  3. Slip Mechanism: In applications where overload protection is critical, some hydraulic couplings feature a slip mechanism. When the torque exceeds a certain threshold, the coupling slips, disengaging the driving and driven elements. This slip mechanism prevents damage to the system and its components by acting as a safety feature under high-load conditions.
  4. Hydraulic Fluid Damping: The hydraulic fluid present in the coupling acts as a damping medium. When torque is transmitted from the driving element to the driven element, the fluid dampens the transmission of vibrations, providing a smoother and quieter operation while reducing wear and tear.
  5. Gradual Start-up: During system start-up, hydraulic couplings provide gradual power transmission. As the fluid flow builds up and pressure increases, the coupling gradually engages, minimizing the shock and stress on the system. This gradual start-up is particularly beneficial for systems with heavy loads and delicate components.
  6. Continuous Power Transmission: Hydraulic couplings maintain continuous power transmission even when there are slight misalignments or variations in operating conditions. The ability to accommodate misalignments and fluctuations in torque allows the system to operate reliably and efficiently over time.

By accommodating misalignments, damping vibrations, and providing overload protection, hydraulic couplings ensure the smooth and reliable operation of hydraulic systems. Their versatility and adaptability make them suitable for a wide range of industrial applications, where precision, efficiency, and protection against shock loads are essential requirements.

China factory Bucket Couplings for Excavator Bucket Hydraulic Quick Connector Sk200  China factory Bucket Couplings for Excavator Bucket Hydraulic Quick Connector Sk200
editor by CX 2024-04-22

China Professional 320d 20 Ton Bucket Quick Hitch Coupler Hydraulic Coupling for Excavator

Product Description

Quick couplers (also called quick hitches) are used with construction machines to allow the rapid change of buckets and attachments on the machine. They remove the need to use hammers to manually drive out and insert the mounting pins for attachments. They can be used on excavator, mini excavator, backhoe loader and so on.

We can supply 3 type: hydraulic type, Double lock type and Mechanical type.

                                                                                      Multi-quick hitch

Multi-Quick Coupler Specification
Model Unit RQH01D(a) RQH01D(b) RQH02D RQH04D RQH06D RQH08D RQH10D(a) RQH10D(b)
Carrier Weight T 1~2 2~4 4~6 6~8 10~15 15~27 25~32 30~36
Pin Diameter mm 30 35/40 45 50/55 60/65 70/80 90 90/100
Arm Width(W1) mm 105~125 110~135 140~180 185~220 220~270 300-340 350~390 390~420
Center To Center(A1) mm 120~140 140~215 185~290 260~320 340~430 380~490 460~530 480~550
Equipping Distance(A2) mm 120~140 140~215 185~290 260~320 340~430 380~490 460~530 480~550

Up and Down pin 

center distance(H1)

mm 125 125 165-175 200 245 275 315  
Working Pressure Bar 40~248 40~248 40~248 40~205 40~205 40~205 40~205 40~205
Oil Flow L/min 10~20 10~20 10~20 10~20 10~20 10~20 10~20 10~20
Unit Weight Kg 20 23.5 51-80 110 185 340 500  
Unit Length mm 370 400 505-610 655 820 980 1060  
Unit Width mm 220 240 275-330 312 440 510 560  
Unit High mm 210 210 265-320 335 410 490 560  
Lifting Eye Rating T 1 1 2-3 4 5 8    

We can also product hydraulic type and double lock type.

Advantages:

1. Welding Technique: 17 years experience, full welding and not easy to crack.

2. Grease Nipple: Make pin not easy to wear

3. Double Lock System: Front jaw lock and Rear safety lock make the operation much safer. Which embrace the pins tightly even if the cylinder suddenly inoperation.

4. Imported oil cylinder and not easy to damage

5. Without safety pin and excavator operator can operate  it in the cab alone.

6. Wide range of application: Compared with fixed C to C distance(A) of routine quick hitch,  multi quick hitch is more flexible. It is suitable for all attachments with the C to C distance(A) within its range. 

1. Open the cylinder, and ensure slide is fully extended with front jaw safety lock open.

2. Line up attachments and engage front attachments pin.

3. Close the cylinder. This will retract the slide mechanism and this will visibly lock the front jaw safety latch around front attachment pin.

4. Open the cylinder again. The sliding mechanism will extend and engage the rear slide hook CHINAMFG the rear attachment pin.

5. Proceed with connection test.

 

RAY ATTACHMENTS includes HangZhou CHINAMFG International Trading Company and HangZhou CHINAMFG Precision Machinery Co.,Ltd. It is a Integrated Company dedicated to production, research and development and sales of construction machinery attachments.with 17 years experience. The main products include earth auger, quick hitch, hydraulic breaker, vibro ripper and other heavy duty equipment. Our company covers an area of more than 20000 square CHINAMFG and has more than 150 employees, including professional R & D teams and Sales Department. Welcome to visit!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings handle both angular and axial misalignments simultaneously?

Yes, hydraulic couplings are designed to handle both angular and axial misalignments simultaneously. These couplings have inherent flexibility in their design, allowing them to accommodate various types of misalignments between the driving and driven shafts.

Angular misalignment occurs when the axes of the two shafts are not collinear, resulting in an angle between them. Axial misalignment, on the other hand, refers to the offset between the two shafts along their axis. Hydraulic couplings can compensate for these misalignments without sacrificing their ability to transmit torque efficiently.

The design of hydraulic couplings typically includes features such as flexible elements, torsional flexibility, or a fluid medium that allows the coupling to absorb and compensate for misalignments. When misalignment occurs, the flexible elements or fluid within the coupling act as a buffer, transmitting torque smoothly and reducing stress on the connected components.

By accommodating both angular and axial misalignments, hydraulic couplings offer several advantages in various applications:

  • Reduced Wear: Hydraulic couplings’ ability to handle misalignments helps reduce wear and tear on the shafts, bearings, and other components, prolonging the life of the equipment.
  • Smooth Operation: The ability to compensate for misalignments results in smoother operation and reduced vibrations, contributing to overall system performance and precision.
  • Overload Protection: Hydraulic couplings can provide overload protection by allowing slippage when torque exceeds the coupling’s capacity, protecting the system from damage.
  • Shock Absorption: In systems subject to shock loads or sudden changes in torque, hydraulic couplings can absorb and dampen these shocks, preventing damage to the equipment.
  • Maintenance Reduction: By minimizing stress on the system components, hydraulic couplings can help reduce maintenance requirements and downtime.

It is important to note that the extent of misalignment accommodation may vary depending on the specific design and type of hydraulic coupling. Manufacturers provide guidelines and specifications for each coupling, including the maximum allowable misalignments.

Overall, hydraulic couplings’ ability to handle both angular and axial misalignments simultaneously makes them a versatile choice for various industrial applications where precision, efficiency, and reliable power transmission are essential.

hydraulic coupling

What are some real-world examples of successful hydraulic coupling installations and their benefits?

Hydraulic couplings have been successfully implemented in various real-world applications, offering significant benefits in terms of performance, efficiency, and reliability. Here are some examples of successful hydraulic coupling installations and the advantages they provided:

  • Construction Equipment: In the construction industry, hydraulic couplings are extensively used in excavators, loaders, bulldozers, and cranes. The flexibility and high torque transmission capability of hydraulic couplings ensure smooth and precise movements of heavy machinery, improving productivity and reducing wear on mechanical components. Additionally, the leak-free connections in hydraulic systems prevent fluid loss and environmental contamination.
  • Industrial Manufacturing: In manufacturing plants, hydraulic couplings are commonly found in various equipment like hydraulic presses, injection molding machines, and metal forming machinery. The instant response and controllability of hydraulic systems, enabled by high-quality couplings, allow precise positioning and repeatable operations, ensuring consistent product quality and reducing material waste.
  • Agricultural Machinery: Hydraulic couplings play a vital role in agricultural machinery, such as tractors, harvesters, and irrigation systems. The ability to handle varying loads and pressures in hydraulic couplings ensures efficient operation in different farming tasks. Moreover, the robustness and resistance to environmental factors contribute to the longevity and reliability of the agricultural equipment.
  • Mobile Equipment: Mobile hydraulic applications, including waste collection trucks, fire trucks, and utility service vehicles, benefit from hydraulic couplings’ compact design and versatility. Hydraulic systems with the right couplings offer precise control, even in confined spaces, making them suitable for diverse mobile operations.
  • Material Handling: Hydraulic couplings are integral to material handling equipment like forklifts, conveyor systems, and pallet stackers. The smooth acceleration and deceleration provided by hydraulic couplings improve safety and handling efficiency, allowing operators to maneuver heavy loads with ease.
  • Offshore and Marine: In offshore and marine applications, hydraulic couplings are used in cranes, winches, and other systems. The hermetically sealed magnetic couplings, for instance, prevent fluid leakage in critical marine environments, reducing maintenance costs and minimizing the risk of contamination in sensitive marine ecosystems.

The benefits of these successful hydraulic coupling installations include:

  • Improved Performance: Hydraulic couplings enable precise control and efficient power transmission, resulting in improved equipment performance and productivity.
  • Energy Efficiency: Hydraulic couplings with reduced pressure losses and optimized fluid flow contribute to energy savings, making hydraulic systems more environmentally friendly and cost-effective.
  • Enhanced Safety: The reliability and leak-free operation of hydraulic couplings increase operational safety, reducing the risk of accidents and equipment failures.
  • Extended Equipment Lifespan: Properly selected and maintained hydraulic couplings contribute to the longevity of hydraulic systems, reducing downtime and maintenance costs.
  • Environmental Protection: Hydraulic couplings, especially those with non-leak designs, help prevent fluid spills and reduce the impact of hydraulic systems on the environment.

These real-world examples illustrate the versatility and advantages of hydraulic couplings across different industries. The proper selection and installation of hydraulic couplings can significantly enhance the performance, efficiency, and reliability of various hydraulic systems, delivering long-term benefits for businesses and end-users alike.

hydraulic coupling

What are the different types of hydraulic couplings used in various industrial applications?

Hydraulic couplings come in various types and designs to suit different industrial applications. Some of the commonly used types include:

  1. Jaw Couplings: Jaw couplings are versatile and widely used in industrial machinery. They consist of two hubs with interlocking jaws that transmit torque between the shafts. These couplings provide good misalignment capacity and vibration damping.
  2. Disc Couplings: Disc couplings use a series of thin, flexible metal discs to transmit torque. They offer high torsional stiffness and can accommodate misalignments. They are commonly found in high-performance applications and precision equipment.
  3. Fluid Couplings: Fluid couplings use hydraulic fluid to transmit torque. They are suitable for applications requiring smooth start-ups and shock absorption. These couplings are often used in heavy machinery, such as conveyors and crushers.
  4. Gear Couplings: Gear couplings consist of gear teeth on the hubs that mesh with each other to transmit torque. They offer high torque capacity and can handle misalignments and shock loads. Gear couplings are commonly used in heavy-duty industrial applications.
  5. Oldham Couplings: Oldham couplings use a sliding disc in the middle to transmit torque. They provide high misalignment capacity and are used in applications where shafts are not in perfect alignment.
  6. Diaphragm Couplings: Diaphragm couplings use a thin metal diaphragm to transmit torque. They provide high torsional stiffness and can handle high speeds and misalignments. These couplings are used in applications like pumps and compressors.
  7. Beam Couplings: Beam couplings use helical cuts in a flexible beam to transmit torque. They are lightweight and have good misalignment capacity. Beam couplings are used in precision equipment and motion control applications.
  8. Universal Joints: While not a traditional hydraulic coupling, universal joints are used in fluid power transmission applications. They provide flexibility in transmitting torque at varying angles and are commonly found in drivetrains and automotive systems.

Each type of hydraulic coupling has its advantages and limitations, making them suitable for specific industrial applications based on factors like torque requirements, misalignment tolerance, and operating conditions. Proper selection and maintenance of hydraulic couplings are essential to ensure efficient power transmission and prolong the life of the machinery.

China Professional 320d 20 Ton Bucket Quick Hitch Coupler Hydraulic Coupling for Excavator  China Professional 320d 20 Ton Bucket Quick Hitch Coupler Hydraulic Coupling for Excavator
editor by CX 2024-04-19

China Professional Excavator Bucket Quick Couplers, Quick Hitch, Hydraulic Quick Release Coupling

Product Description

Excavator bucket quick couplers, quick hitch, hydraulic quick release coupling
 

Product Description

Excavator quick coupler, also named as quick hitch coupler, quick hitch, bucket pin grabber can quickly connect various attachments (bucket, hydraulic breaker, hydraulic plate compactor, log grapple, ripper, etc.) on excavators, which can expand the scope of use of excavators, and save time and improve work efficiency.

As 1 of the leading excavator quick coupler manufacturers in China, HOMIE has a full range of quick hitch couplers for all kinds of brands and models of excavators.

Product Parameters

Please check the following quick coupler specification to choose the right model:

Category Unit Mini HM02 HM04 HM06 HM08 HM10 HM14
Pin Diameter mm 20-40 40-45 45-60 60-70 70-80 90-100 100-110
Oil Pressure bar 25-300 25-300 25-300 25-300 25-300 25-300 25-300
Operating Flow Lpm 15-25 15-25 15-25 15-25 15-25 15-25 15-25
Weight kg 25-40 50-75 70-110 180-250 350-450 550-650 650-800
Suitable Excavator Ton 1.5-3 4-6 6-9 12-16 17-25 26-35 35-45

More Products:
HOMIE develop and produce different types of excavator attachments, provide one-stop purchasing service. Our main products are different types of grapple, quick coupler, hydraulic plate compactor, rotary screening bucket, crusher bucket, heavy duty shear, demolition shear, hydraulic pulverizer, orange peel grapple, car dismantling shear, sleeper changer…

Company Profile

HangZhou Hemei Hydraulic Machinery Equipment Co., Ltd is 1 of leading manufacturers for excavator attachments in China. All products’ quality are strictly under control from processing to delivery. By continuous innovation and improvement, the company has got ISO 9001, CE certifications and technical patents successively. Our products have been sold to widely domestic and oversea customers and long term partnerships have been developed.

 

Certifications

 

 

Exhibition:

 

FAQ

1.What color can you produce ?
Yellow.If you need special, please advise.

2.How about the delivery time ?
Within 3-7 working days after receiving advance payment.

3.What’s the MOQ and payment ?
MOQ is 1 set.
T/T, L/C, Credit card, Money Gram, west union is accepted. and other terms can also be negotiated.

4.Are you a manufacture?
Yes, our factory was established in 2018.

5.Can you produce according to customers’ design?
Sure,we are professional manufacturer,OEM is available.

6.Which country have you exported?
America,Brazil,Mexico,Canada, Australia, Peru,Spain,Egypt,Pakistan, South Africa,etc.

7.How to buy my wanted products quickly?
Show me the model or the weight of your excavator, and we can give you best solution.
If you want to know the CHINAMFG freight,please also suggest your nearest SEAPORT.

8.How about the package?
Plywood case, or as customers’ demands.

9.How about your service?
7Days *24Hours hot line and email service.
Well-Retrained and experience staffs will answer all your questions within 12 hours.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Are there specialized hydraulic couplings for high-pressure or high-flow applications?

Yes, there are specialized hydraulic couplings designed to meet the demands of high-pressure and high-flow applications. These specialized couplings are engineered to handle the increased loads, pressures, and flow rates typically encountered in industrial settings where heavy-duty equipment and machinery are used. Here are some types of hydraulic couplings commonly used in such applications:

  • High-Pressure Hydraulic Couplings: High-pressure hydraulic couplings are constructed with robust materials and advanced sealing technologies to withstand extreme pressure levels. They are commonly used in hydraulic systems that operate at pressures exceeding standard hydraulic system limits. These couplings ensure reliable power transmission and prevent leakage or failure under high-pressure conditions.
  • Quick-Disconnect Couplings: Quick-disconnect couplings, also known as quick-release or quick-connect couplings, are designed for rapid and efficient connection and disconnection of hydraulic lines. They are prevalent in high-flow applications where frequent connections and disconnections are necessary, such as in construction equipment, agricultural machinery, and manufacturing processes.
  • Multi-Couplings: Multi-couplings allow the simultaneous connection of multiple hydraulic lines with a single motion. These couplings are suitable for applications with complex hydraulic circuits, such as material handling systems and mobile hydraulics. They simplify the connection process and minimize downtime during equipment setup or maintenance.
  • High-Flow Hydraulic Couplings: High-flow hydraulic couplings are designed to accommodate large volumetric flow rates in hydraulic systems. They feature larger passageways and flow channels to reduce pressure drop and ensure efficient fluid transfer in applications like heavy machinery, material handling, and large-scale industrial processes.
  • Flush Face Couplings: Flush face couplings provide a leak-free connection when connected or disconnected. They are suitable for high-pressure applications where minimizing fluid loss during connection and disconnection is critical for safety and environmental reasons.
  • Flat Face Couplings: Flat face couplings are ideal for high-pressure applications where cleanliness and contamination control are essential. Their flat mating surfaces prevent trapping debris during connection, making them suitable for construction equipment, mining machinery, and other rugged applications.
  • High-Temperature Hydraulic Couplings: High-temperature hydraulic couplings are designed to operate in extreme temperature environments, such as those encountered in hot industrial processes or near machinery generating significant heat. They use specialized seals and materials that can withstand elevated temperatures without compromising performance.

Specialized hydraulic couplings are engineered to handle the unique challenges posed by high-pressure or high-flow applications, ensuring safe, efficient, and reliable operation in demanding industrial environments. When selecting a hydraulic coupling for such applications, it’s crucial to consider factors like the specific pressure and flow requirements, environmental conditions, compatibility with the hydraulic fluid, and the overall system design to achieve optimal performance and safety.

hydraulic coupling

How do hydraulic couplings compare to other coupling types, such as mechanical or magnetic couplings?

Hydraulic couplings, mechanical couplings, and magnetic couplings are three distinct types of couplings used in various applications to transmit power between shafts. Each type of coupling offers specific advantages and limitations, making them suitable for different scenarios. Here’s a comparison of hydraulic couplings with mechanical and magnetic couplings:

  • Power Transmission:
    • Hydraulic Couplings: Hydraulic couplings transmit power using hydraulic fluid to transfer torque between connected shafts. They are well-suited for applications with varying torque demands, as the fluid medium can accommodate fluctuations and dampen shock loads.
    • Mechanical Couplings: Mechanical couplings directly connect the shafts through solid mechanical links, such as rigid couplings or flexible couplings (e.g., gear, jaw, or disc couplings). They efficiently transmit power without losses, making them suitable for high-torque applications.
    • Magnetic Couplings: Magnetic couplings use magnetic fields to transfer torque between shafts. They offer non-contact power transmission, which eliminates the need for mechanical seals, making them suitable for applications requiring hermetic sealing, such as pumps handling hazardous fluids.
  • Speed and Torque:
    • Hydraulic Couplings: Hydraulic couplings can accommodate variations in speed and torque within their design limits. They offer good torque-to-inertia ratio, enabling smooth acceleration and deceleration in hydraulic systems.
    • Mechanical Couplings: Mechanical couplings maintain precise shaft alignment and have high torque capacity. However, they may not handle speed variations as effectively as hydraulic couplings.
    • Magnetic Couplings: Magnetic couplings are not suitable for high-torque applications, but they offer excellent speed control and precise torque transmission without direct contact between shafts.
  • Maintenance and Wear:
    • Hydraulic Couplings: Hydraulic couplings may require periodic maintenance, such as seal replacements, to ensure proper operation. They experience wear due to fluid flow and pressure.
    • Mechanical Couplings: Mechanical couplings have mechanical wear and may require lubrication and maintenance to sustain optimal performance and prevent misalignment over time.
    • Magnetic Couplings: Magnetic couplings have minimal wear and require less maintenance due to their non-contact nature. They are less prone to mechanical failures but may require magnetic field adjustments.
  • Environmental Considerations:
    • Hydraulic Couplings: Hydraulic couplings may require hydraulic fluid, which must be properly managed and maintained. They can be susceptible to fluid leakage if not adequately sealed.
    • Mechanical Couplings: Mechanical couplings can generate friction and heat during operation, which may require cooling measures in high-speed applications.
    • Magnetic Couplings: Magnetic couplings are hermetically sealed, preventing fluid leakage and offering environmental advantages in applications where containment is critical.

The selection of the most appropriate coupling type depends on the specific requirements of the application, including torque, speed, environmental factors, maintenance considerations, and cost. Each coupling type offers unique features that cater to diverse industrial needs, making them valuable components in numerous mechanical systems.

hydraulic coupling

What are the key design considerations when using hydraulic couplings in hydraulic systems?

Designing hydraulic systems with hydraulic couplings requires careful consideration of various factors to ensure optimal performance, reliability, and safety. Here are the key design considerations:

  1. Fluid Compatibility: Select hydraulic couplings made from materials compatible with the hydraulic fluid used in the system. Incompatible materials may lead to chemical reactions, corrosion, or degradation of the coupling, affecting its performance and service life.
  2. Pressure Rating: Ensure that the hydraulic coupling has an adequate pressure rating to handle the maximum operating pressure of the hydraulic system. Using a coupling with a lower pressure rating may lead to failure and system leaks.
  3. Temperature Range: Consider the temperature range in which the hydraulic system will operate. Choose a hydraulic coupling that can withstand the minimum and maximum temperatures without deformation or loss of performance.
  4. Torsional Stiffness: Evaluate the required torsional stiffness of the coupling based on the system’s torque demands. A coupling with insufficient torsional stiffness may lead to excessive vibrations and decreased system accuracy.
  5. Misalignment Compensation: Hydraulic couplings should be able to accommodate misalignments between the driving and driven shafts. Consider the angular, radial, and axial misalignment capacity of the coupling to prevent excessive stress on the system components.
  6. Speed and Torque Requirements: Determine the speed and torque demands of the hydraulic system. Choose a coupling that can handle the required torque and rotational speed to ensure efficient power transmission.
  7. Environmental Conditions: Factor in the environmental conditions the hydraulic system will be exposed to, such as moisture, dust, chemicals, or extreme temperatures. Select a coupling with appropriate coatings or materials to withstand these conditions.
  8. Overload Protection: Consider whether overload protection is necessary for the hydraulic system. Some hydraulic couplings offer built-in overload protection features, which can be beneficial in preventing damage during unexpected load spikes.
  9. Installation and Maintenance: Choose a hydraulic coupling that is easy to install and maintain. Accessible coupling designs simplify inspection and servicing, reducing downtime and maintenance costs.
  10. Size and Weight: Consider the available space and weight constraints in the system. Opt for a hydraulic coupling that fits within the available space and meets the weight limitations without compromising performance.

By carefully considering these design considerations and selecting the appropriate hydraulic coupling, designers can ensure a reliable and efficient hydraulic system that meets the specific requirements of the application. Regular maintenance and proper coupling installation also play a crucial role in prolonging the life and performance of the hydraulic system.

China Professional Excavator Bucket Quick Couplers, Quick Hitch, Hydraulic Quick Release Coupling  China Professional Excavator Bucket Quick Couplers, Quick Hitch, Hydraulic Quick Release Coupling
editor by CX 2024-04-13

China supplier Bucket Couplings for Excavator Bucket Hydraulic Quick Connector Sk200

Product Description

HEADLINE Bucket Couplings for Excavator bucket hydraulic quick connector sk200
PART NAME Hook Excavator
PART NUMBER HGWF2018 / Customized
MATERIAL Q345B, 40Cr.
FEATURES 1/ OEM, according to customer’s demand, can match most Brands machines
2/ High steel toughness and good CHINAMFG resistance for hard environment.
3/ Multi-purpose and easy for operating.
4/ High Standard components and parts. 
PRODUCT APPLICATION Machinery Repair Shops, Manufacturing Plant, Farms, Construction works ,
Energy & Mining.
MANUFACTURING PROCESS Fabrication Welding.
MOQ 1 set (It is able to provide a few samples first time)
PACKAGE Pallet or Wooden case.
PAYMENT TERM T/T, Western Union.
DELIEVERY TIME Within 7 workdays according to your order.
TRANSPORTATION DHL/FEDEX/UPS/TNT/ARAMEX, AIR & SEA

  CHINAMFG always persist in the principle of “Integrity Based, Customers Top”, giving great care to the overall processes such as from production, quoting, purchasing to packing and transporting. What we are pursuing is not just profit margin, but rather a lasting CHINAMFG partnership with you. Our professional team serve to customers from all over the worlds. We adhere to the concept of “Quality first, create the best” is increasing the value to customers and partners. Our key advantage over other is our attitude toward quality. We know what′s right, and not what just good enough. This is reflected in our quick response, technical analyze of drawings, proactive approach in passing on our production experience to help clients reduce cost and improve designs. In Foreign Trade Department we also cooperate with the best and most experienced factories with approved ISO 9001 in China. We work closely with these factories to offer quick delivery and quality service to our customers. We can help you stock a parts warehouse with quality factory parts for dealer service after the sale. If you are a distributor or dealer, please ask about our program to help build a parts warehouse for your company. CHINAMFG have a close relationship with these factories and can supply mixed product shipping if necessary. 

Hiugong’s Cooperated Brands include: XCMG, Sany, Zoomlion, Liugong, Lonking, Shantui, XGMA, Sunward, Lovol, Sem, Yuchai, Xihu (West Lake) Dis.n, Weichai, SDLG, YTO. Caterpillar, KOMATSU, HITACHI, CHINAMFG Construction Equipment, Liebherr, DOOSAN, John Deere, JCB, Terex, Sandvik, Wirtgen, Kobelco, Hyundai.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings be used in applications involving corrosive or aggressive fluids?

Yes, hydraulic couplings can be used in applications involving corrosive or aggressive fluids, but the choice of materials and design considerations is critical to ensure compatibility and long-term performance. Corrosive fluids, such as acids, alkalis, and certain chemicals, can pose significant challenges to hydraulic systems. Here are some key factors to consider when using hydraulic couplings in such applications:

  • Material Selection: Choose hydraulic couplings made from materials that are resistant to the specific corrosive fluid being handled. Stainless steel, certain alloys, and corrosion-resistant coatings are common choices for couplings in corrosive environments.
  • Sealing Solutions: Ensure that the couplings have effective sealing solutions to prevent fluid leakage. High-quality seals and gaskets that are compatible with the corrosive fluid are essential to maintain system integrity.
  • Chemical Compatibility: Thoroughly assess the chemical compatibility between the hydraulic fluid and the coupling materials. Consider the fluid’s temperature, concentration, and potential reactions with the coupling components.
  • Special Coatings: In some cases, using hydraulic couplings with specialized coatings or treatments can enhance their resistance to corrosion and aggressive fluids.
  • Regular Inspection and Maintenance: Implement a stringent inspection and maintenance schedule to monitor the condition of the hydraulic couplings and detect any signs of corrosion or degradation. Promptly replace any damaged or worn couplings to prevent fluid leaks and system failure.
  • Fluid Contamination: Corrosive fluids can lead to the formation of contaminants in the hydraulic system. Implement effective filtration and contamination control measures to prevent particle buildup and system damage.
  • Operating Conditions: Consider the temperature, pressure, and flow conditions of the system, as these factors can impact the corrosion resistance of the couplings and the overall system performance.

While hydraulic couplings can be used in corrosive or aggressive fluid applications, it is essential to consult with coupling manufacturers or fluid system experts to ensure proper material selection and system design. They can provide guidance on selecting the most suitable hydraulic couplings and recommend additional measures to protect the system from the adverse effects of corrosive fluids.

By employing the right materials, adopting proper maintenance practices, and taking the necessary precautions, hydraulic couplings can effectively function in applications involving corrosive or aggressive fluids, providing reliable and safe fluid power transmission.

hydraulic coupling

Can hydraulic couplings be retrofitted into existing hydraulic systems for improved performance?

Yes, hydraulic couplings can be retrofitted into existing hydraulic systems to enhance performance, improve reliability, and address specific system requirements. Retrofitting hydraulic couplings can be a cost-effective way to upgrade older systems without the need for extensive modifications or complete replacements.

Retrofitting hydraulic couplings may be beneficial for several reasons:

  • Improved Efficiency: Upgrading to modern hydraulic couplings with better design features can reduce energy losses and improve overall system efficiency. For example, switching from older, less efficient couplings to newer, more streamlined designs can optimize fluid flow and reduce pressure drop.
  • Leak Reduction: Older hydraulic systems may experience fluid leaks due to worn-out or damaged couplings. Retrofitting with new, high-quality couplings equipped with advanced sealing technologies can significantly reduce the risk of leaks, leading to better system reliability and environmental safety.
  • Higher Pressure and Flow Capabilities: Newer hydraulic couplings may offer higher pressure and flow ratings, allowing the system to handle increased demands or heavier loads. This can be crucial for applications that require more power and performance.
  • Material Compatibility: In some cases, existing hydraulic systems may have components made from materials that are not compatible with certain hydraulic fluids. Retrofitting with appropriate couplings can ensure compatibility and prevent corrosion or other fluid-related issues.
  • Space Constraints: Modern hydraulic couplings often come in more compact designs, which can be advantageous for systems with limited space. Retrofitting with smaller couplings may allow for better system integration and improved layout.
  • Environmental Compliance: Retrofitting hydraulic couplings can help align the system with current environmental regulations and industry standards, reducing the risk of potential fines or non-compliance issues.

Before retrofitting hydraulic couplings, careful evaluation of the existing system is necessary to ensure compatibility and identify specific areas for improvement. Factors such as thread type, size, pressure rating, flow capacity, and material compatibility must be considered to select the appropriate couplings for the retrofit.

It’s essential to consult with hydraulic coupling manufacturers or experienced fluid power professionals when planning a retrofit. They can provide guidance on suitable coupling options and recommend the necessary modifications or adjustments to optimize system performance.

In conclusion, retrofitting hydraulic couplings into existing hydraulic systems can be a viable solution for enhancing performance, reducing leaks, and achieving better overall efficiency and reliability. It allows businesses to leverage the latest advancements in hydraulic coupling technology to extend the lifespan and improve the functionality of their existing hydraulic systems.

hydraulic coupling

What is a hydraulic coupling, and how does it function in fluid power transmission?

A hydraulic coupling is a mechanical device used in fluid power systems to transmit power from one shaft to another, often at different angles or distances. It facilitates the transfer of hydraulic energy from a prime mover, such as an electric motor or an internal combustion engine, to various hydraulic components, such as pumps, actuators, and cylinders.

The main function of a hydraulic coupling is to transmit rotational motion and power while accommodating misalignments and torsional vibrations. It acts as a link between the driving and driven shafts, ensuring that the hydraulic system operates smoothly and efficiently.

Hydraulic couplings operate based on the principle of hydraulic fluid transmission. The coupling consists of two main parts, the input (driving) and output (driven) elements, both of which have specially designed vanes or blades. These vanes are submerged in hydraulic fluid.

When the input element rotates, it creates a flow of hydraulic fluid around the vanes, which in turn generates pressure on the output element. The pressure difference between the two elements causes the output element to start rotating, effectively transmitting power from the input shaft to the output shaft.

Hydraulic couplings are advantageous in various applications due to their ability to:

  1. Isolate Shock Loads: They can isolate and dampen shock loads and torsional vibrations, protecting sensitive components from sudden jolts and improving overall system performance.
  2. Accommodate Misalignment: Hydraulic couplings can accommodate misalignment between the input and output shafts, reducing wear and tear on the system and extending the lifespan of the components.
  3. Provide Overload Protection: They offer overload protection by slipping or disengaging when the torque exceeds a certain threshold, preventing damage to the system and its components.
  4. Start-Up Assistance: Hydraulic couplings can provide smooth start-up assistance, gradually transmitting power as the fluid builds up pressure, minimizing shock and stress during system startup.
  5. Reduce Noise and Vibration: By dampening vibrations and shock loads, hydraulic couplings contribute to quieter and smoother operation of fluid power systems.

Overall, hydraulic couplings play a critical role in fluid power transmission, ensuring efficient power transfer, protecting components from shocks and vibrations, and enhancing the overall performance and reliability of hydraulic systems in various industrial and mobile applications.

China supplier Bucket Couplings for Excavator Bucket Hydraulic Quick Connector Sk200  China supplier Bucket Couplings for Excavator Bucket Hydraulic Quick Connector Sk200
editor by CX 2024-02-12

China factory Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator

Product Description

Quick couplers (also called quick hitches) are used with construction machines to allow the rapid change of buckets and attachments on the machine. They remove the need to use hammers to manually drive out and insert the mounting pins for attachments. They can be used on excavator, mini excavator, backhoe loader and so on.

We can supply 3 type: hydraulic type, Double lock type and Mechanical type.

                                                                                      Multi-quick hitch

Multi-Quick Coupler Specification
Model Unit RQH01D(a) RQH01D(b) RQH02D RQH04D RQH06D RQH08D RQH10D(a) RQH10D(b)
Carrier Weight T 1~2 2~4 4~6 6~8 10~15 15~27 25~32 30~36
Pin Diameter mm 30 35/40 45 50/55 60/65 70/80 90 90/100
Arm Width(W1) mm 105~125 110~135 140~180 185~220 220~270 300-340 350~390 390~420
Center To Center(A1) mm 120~140 140~215 185~290 260~320 340~430 380~490 460~530 480~550
Equipping Distance(A2) mm 120~140 140~215 185~290 260~320 340~430 380~490 460~530 480~550

Up and Down pin 

center distance(H1)

mm 125 125 165-175 200 245 275 315  
Working Pressure Bar 40~248 40~248 40~248 40~205 40~205 40~205 40~205 40~205
Oil Flow L/min 10~20 10~20 10~20 10~20 10~20 10~20 10~20 10~20
Unit Weight Kg 20 23.5 51-80 110 185 340 500  
Unit Length mm 370 400 505-610 655 820 980 1060  
Unit Width mm 220 240 275-330 312 440 510 560  
Unit High mm 210 210 265-320 335 410 490 560  
Lifting Eye Rating T 1 1 2-3 4 5 8    

We can also product hydraulic type and double lock type.

Advantages:

1. Welding Technique: 17 years experience, full welding and not easy to crack.

2. Grease Nipple: Make pin not easy to wear

3. Double Lock System: Front jaw lock and Rear safety lock make the operation much safer. Which embrace the pins tightly even if the cylinder suddenly inoperation.

4. Imported oil cylinder and not easy to damage

5. Without safety pin and excavator operator can operate  it in the cab alone.

6. Wide range of application: Compared with fixed C to C distance(A) of routine quick hitch,  multi quick hitch is more flexible. It is suitable for all attachments with the C to C distance(A) within its range. 

1. Open the cylinder, and ensure slide is fully extended with front jaw safety lock open.

2. Line up attachments and engage front attachments pin.

3. Close the cylinder. This will retract the slide mechanism and this will visibly lock the front jaw safety latch around front attachment pin.

4. Open the cylinder again. The sliding mechanism will extend and engage the rear slide hook CHINAMFG the rear attachment pin.

5. Proceed with connection test.

 

RAY ATTACHMENTS includes HangZhou CHINAMFG International Trading Company and HangZhou CHINAMFG Precision Machinery Co.,Ltd. It is a Integrated Company dedicated to production, research and development and sales of construction machinery attachments.with 17 years experience. The main products include earth auger, quick hitch, hydraulic breaker, vibro ripper and other heavy duty equipment. Our company covers an area of more than 20000 square CHINAMFG and has more than 150 employees, including professional R & D teams and Sales Department. Welcome to visit!

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings be used in applications involving corrosive or aggressive fluids?

Yes, hydraulic couplings can be used in applications involving corrosive or aggressive fluids, but the choice of materials and design considerations is critical to ensure compatibility and long-term performance. Corrosive fluids, such as acids, alkalis, and certain chemicals, can pose significant challenges to hydraulic systems. Here are some key factors to consider when using hydraulic couplings in such applications:

  • Material Selection: Choose hydraulic couplings made from materials that are resistant to the specific corrosive fluid being handled. Stainless steel, certain alloys, and corrosion-resistant coatings are common choices for couplings in corrosive environments.
  • Sealing Solutions: Ensure that the couplings have effective sealing solutions to prevent fluid leakage. High-quality seals and gaskets that are compatible with the corrosive fluid are essential to maintain system integrity.
  • Chemical Compatibility: Thoroughly assess the chemical compatibility between the hydraulic fluid and the coupling materials. Consider the fluid’s temperature, concentration, and potential reactions with the coupling components.
  • Special Coatings: In some cases, using hydraulic couplings with specialized coatings or treatments can enhance their resistance to corrosion and aggressive fluids.
  • Regular Inspection and Maintenance: Implement a stringent inspection and maintenance schedule to monitor the condition of the hydraulic couplings and detect any signs of corrosion or degradation. Promptly replace any damaged or worn couplings to prevent fluid leaks and system failure.
  • Fluid Contamination: Corrosive fluids can lead to the formation of contaminants in the hydraulic system. Implement effective filtration and contamination control measures to prevent particle buildup and system damage.
  • Operating Conditions: Consider the temperature, pressure, and flow conditions of the system, as these factors can impact the corrosion resistance of the couplings and the overall system performance.

While hydraulic couplings can be used in corrosive or aggressive fluid applications, it is essential to consult with coupling manufacturers or fluid system experts to ensure proper material selection and system design. They can provide guidance on selecting the most suitable hydraulic couplings and recommend additional measures to protect the system from the adverse effects of corrosive fluids.

By employing the right materials, adopting proper maintenance practices, and taking the necessary precautions, hydraulic couplings can effectively function in applications involving corrosive or aggressive fluids, providing reliable and safe fluid power transmission.

hydraulic coupling

What are the standard sizes and thread types available for hydraulic couplings?

Hydraulic couplings come in a variety of sizes and thread types to accommodate different hydraulic system requirements. The standard sizes and thread types are specified based on industry standards and regional norms. Here are some common standard sizes and thread types for hydraulic couplings:

  • Thread Types:
    • NPT (National Pipe Thread): NPT is a widely used thread type in North America. It has a tapered thread design and requires thread sealants like Teflon tape to ensure a leak-free connection.
    • BSP (British Standard Pipe): BSP is commonly used in Europe and many other parts of the world. It can have parallel (BSPP) or tapered (BSPT) threads and often requires thread sealants for a secure connection.
    • JIC (Joint Industry Council): JIC threads have a 37-degree flare angle and are prevalent in hydraulic systems. They provide a reliable metal-to-metal seal without the need for thread sealants.
    • SAE (Society of Automotive Engineers): SAE threads are commonly used in mobile hydraulic applications. They have a 45-degree flare angle and offer excellent sealing capabilities.
    • ORFS (O-Ring Face Seal): ORFS fittings feature a flat face with an O-ring seal. They are suitable for high-pressure applications and provide a reliable leak-free connection.
  • Standard Sizes:
    • Hydraulic couplings are available in various standard sizes, typically measured in inches or millimeters. Common sizes for hydraulic couplings include 1/4″, 3/8″, 1/2″, 3/4″, 1″, and 1 1/4″ for smaller couplings and up to larger sizes like 2″, 2 1/2″, and 3″ for heavy-duty industrial applications.
    • Metric sizes, such as 6 mm, 10 mm, 12 mm, 16 mm, and 20 mm, are also commonly used in hydraulic systems, especially in countries that follow the metric system.
    • Some specialized hydraulic systems may require custom sizes to meet specific application needs.

It’s important to note that while these thread types and sizes are commonly used, there may be other proprietary or industry-specific thread types and sizes depending on the manufacturer or application requirements. When selecting hydraulic couplings, it’s essential to ensure that the chosen couplings match the thread type and size of the corresponding components in the hydraulic system to ensure a proper and secure connection.

Hydraulic coupling manufacturers often provide detailed specifications and technical information about their products, including the available thread types and sizes, to help users select the right couplings for their specific hydraulic system needs.

hydraulic coupling

Can you explain the working principle of a hydraulic coupling and its advantages over other coupling types?

A hydraulic coupling operates based on the principle of hydraulic fluid transmission to transfer power from one shaft to another. It consists of two main parts: the input (driving) element and the output (driven) element, both of which have specially designed vanes or blades submerged in hydraulic fluid.

When the input element rotates, it creates a flow of hydraulic fluid around the vanes. The fluid flow generates pressure on the output element, causing it to start rotating. This pressure difference between the input and output elements facilitates the transfer of torque and power from the driving shaft to the driven shaft.

The working principle of a hydraulic coupling allows it to accommodate misalignments and torsional vibrations. It effectively isolates shock loads, provides overload protection, and dampens vibrations, making it ideal for various industrial applications.

Advantages of hydraulic couplings over other coupling types include:

  1. Misalignment Tolerance: Hydraulic couplings can handle significant shaft misalignments, reducing wear and tear on the system and prolonging the life of the components. Other coupling types may have limitations in this regard.
  2. Vibration Damping: Hydraulic couplings can effectively dampen vibrations, preventing damage to connected equipment and promoting smoother operation. This advantage is especially critical in precision machinery and applications where vibrations can affect accuracy and performance.
  3. Overload Protection: Hydraulic couplings offer built-in overload protection. When the torque exceeds a certain threshold, the fluid coupling slips or disengages, preventing damage to the system and its components. Other coupling types may not have this automatic overload protection.
  4. Smooth Start-up: Hydraulic couplings provide gradual power transmission during start-up, which helps minimize shock and stress on the system. This feature is beneficial for systems with heavy loads or delicate components.
  5. Quiet Operation: Due to their vibration-damping properties, hydraulic couplings contribute to quieter operation, reducing noise levels in the machinery compared to some other coupling types.
  6. Wide Range of Applications: Hydraulic couplings are suitable for a wide range of industrial applications, including heavy machinery, mining equipment, conveyors, pumps, and more. Their adaptability and robust performance make them a popular choice in various industries.

While hydraulic couplings offer many advantages, the selection of the appropriate coupling type ultimately depends on the specific requirements of the application, such as torque, speed, misalignment, and environmental conditions. Properly choosing and maintaining the coupling can significantly improve the efficiency, reliability, and overall performance of fluid power transmission systems in industrial settings.

China factory Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator  China factory Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator
editor by CX 2024-02-09

China factory Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator

Product Description

Quick couplers (also called quick hitches) are used with construction machines to allow the rapid change of buckets and attachments on the machine. They remove the need to use hammers to manually drive out and insert the mounting pins for attachments. They can be used on excavator, mini excavator, backhoe loader and so on.

We can supply 3 type: hydraulic type, Double lock type and Mechanical type.

                                                                                      Multi-quick hitch

Multi-Quick Coupler Specification
Model Unit RQH01D(a) RQH01D(b) RQH02D RQH04D RQH06D RQH08D RQH10D(a) RQH10D(b)
Carrier Weight T 1~2 2~4 4~6 6~8 10~15 15~27 25~32 30~36
Pin Diameter mm 30 35/40 45 50/55 60/65 70/80 90 90/100
Arm Width(W1) mm 105~125 110~135 140~180 185~220 220~270 300-340 350~390 390~420
Center To Center(A1) mm 120~140 140~215 185~290 260~320 340~430 380~490 460~530 480~550
Equipping Distance(A2) mm 120~140 140~215 185~290 260~320 340~430 380~490 460~530 480~550

Up and Down pin 

center distance(H1)

mm 125 125 165-175 200 245 275 315  
Working Pressure Bar 40~248 40~248 40~248 40~205 40~205 40~205 40~205 40~205
Oil Flow L/min 10~20 10~20 10~20 10~20 10~20 10~20 10~20 10~20
Unit Weight Kg 20 23.5 51-80 110 185 340 500  
Unit Length mm 370 400 505-610 655 820 980 1060  
Unit Width mm 220 240 275-330 312 440 510 560  
Unit High mm 210 210 265-320 335 410 490 560  
Lifting Eye Rating T 1 1 2-3 4 5 8    

We can also product hydraulic type and double lock type.

Advantages:

1. Welding Technique: 17 years experience, full welding and not easy to crack.

2. Grease Nipple: Make pin not easy to wear

3. Double Lock System: Front jaw lock and Rear safety lock make the operation much safer. Which embrace the pins tightly even if the cylinder suddenly inoperation.

4. Imported oil cylinder and not easy to damage

5. Without safety pin and excavator operator can operate  it in the cab alone.

6. Wide range of application: Compared with fixed C to C distance(A) of routine quick hitch,  multi quick hitch is more flexible. It is suitable for all attachments with the C to C distance(A) within its range. 

1. Open the cylinder, and ensure slide is fully extended with front jaw safety lock open.

2. Line up attachments and engage front attachments pin.

3. Close the cylinder. This will retract the slide mechanism and this will visibly lock the front jaw safety latch around front attachment pin.

4. Open the cylinder again. The sliding mechanism will extend and engage the rear slide hook CHINAMFG the rear attachment pin.

5. Proceed with connection test.

 

RAY ATTACHMENTS includes HangZhou CHINAMFG International Trading Company and HangZhou CHINAMFG Precision Machinery Co.,Ltd. It is a Integrated Company dedicated to production, research and development and sales of construction machinery attachments.with 17 years experience. The main products include earth auger, quick hitch, hydraulic breaker, vibro ripper and other heavy duty equipment. Our company covers an area of more than 20000 square CHINAMFG and has more than 150 employees, including professional R & D teams and Sales Department. Welcome to visit!

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings handle both angular and axial misalignments simultaneously?

Yes, hydraulic couplings are designed to handle both angular and axial misalignments simultaneously. These couplings have inherent flexibility in their design, allowing them to accommodate various types of misalignments between the driving and driven shafts.

Angular misalignment occurs when the axes of the two shafts are not collinear, resulting in an angle between them. Axial misalignment, on the other hand, refers to the offset between the two shafts along their axis. Hydraulic couplings can compensate for these misalignments without sacrificing their ability to transmit torque efficiently.

The design of hydraulic couplings typically includes features such as flexible elements, torsional flexibility, or a fluid medium that allows the coupling to absorb and compensate for misalignments. When misalignment occurs, the flexible elements or fluid within the coupling act as a buffer, transmitting torque smoothly and reducing stress on the connected components.

By accommodating both angular and axial misalignments, hydraulic couplings offer several advantages in various applications:

  • Reduced Wear: Hydraulic couplings’ ability to handle misalignments helps reduce wear and tear on the shafts, bearings, and other components, prolonging the life of the equipment.
  • Smooth Operation: The ability to compensate for misalignments results in smoother operation and reduced vibrations, contributing to overall system performance and precision.
  • Overload Protection: Hydraulic couplings can provide overload protection by allowing slippage when torque exceeds the coupling’s capacity, protecting the system from damage.
  • Shock Absorption: In systems subject to shock loads or sudden changes in torque, hydraulic couplings can absorb and dampen these shocks, preventing damage to the equipment.
  • Maintenance Reduction: By minimizing stress on the system components, hydraulic couplings can help reduce maintenance requirements and downtime.

It is important to note that the extent of misalignment accommodation may vary depending on the specific design and type of hydraulic coupling. Manufacturers provide guidelines and specifications for each coupling, including the maximum allowable misalignments.

Overall, hydraulic couplings’ ability to handle both angular and axial misalignments simultaneously makes them a versatile choice for various industrial applications where precision, efficiency, and reliable power transmission are essential.

hydraulic coupling

What are the standard sizes and thread types available for hydraulic couplings?

Hydraulic couplings come in a variety of sizes and thread types to accommodate different hydraulic system requirements. The standard sizes and thread types are specified based on industry standards and regional norms. Here are some common standard sizes and thread types for hydraulic couplings:

  • Thread Types:
    • NPT (National Pipe Thread): NPT is a widely used thread type in North America. It has a tapered thread design and requires thread sealants like Teflon tape to ensure a leak-free connection.
    • BSP (British Standard Pipe): BSP is commonly used in Europe and many other parts of the world. It can have parallel (BSPP) or tapered (BSPT) threads and often requires thread sealants for a secure connection.
    • JIC (Joint Industry Council): JIC threads have a 37-degree flare angle and are prevalent in hydraulic systems. They provide a reliable metal-to-metal seal without the need for thread sealants.
    • SAE (Society of Automotive Engineers): SAE threads are commonly used in mobile hydraulic applications. They have a 45-degree flare angle and offer excellent sealing capabilities.
    • ORFS (O-Ring Face Seal): ORFS fittings feature a flat face with an O-ring seal. They are suitable for high-pressure applications and provide a reliable leak-free connection.
  • Standard Sizes:
    • Hydraulic couplings are available in various standard sizes, typically measured in inches or millimeters. Common sizes for hydraulic couplings include 1/4″, 3/8″, 1/2″, 3/4″, 1″, and 1 1/4″ for smaller couplings and up to larger sizes like 2″, 2 1/2″, and 3″ for heavy-duty industrial applications.
    • Metric sizes, such as 6 mm, 10 mm, 12 mm, 16 mm, and 20 mm, are also commonly used in hydraulic systems, especially in countries that follow the metric system.
    • Some specialized hydraulic systems may require custom sizes to meet specific application needs.

It’s important to note that while these thread types and sizes are commonly used, there may be other proprietary or industry-specific thread types and sizes depending on the manufacturer or application requirements. When selecting hydraulic couplings, it’s essential to ensure that the chosen couplings match the thread type and size of the corresponding components in the hydraulic system to ensure a proper and secure connection.

Hydraulic coupling manufacturers often provide detailed specifications and technical information about their products, including the available thread types and sizes, to help users select the right couplings for their specific hydraulic system needs.

hydraulic coupling

What are the different types of hydraulic couplings used in various industrial applications?

Hydraulic couplings come in various types and designs to suit different industrial applications. Some of the commonly used types include:

  1. Jaw Couplings: Jaw couplings are versatile and widely used in industrial machinery. They consist of two hubs with interlocking jaws that transmit torque between the shafts. These couplings provide good misalignment capacity and vibration damping.
  2. Disc Couplings: Disc couplings use a series of thin, flexible metal discs to transmit torque. They offer high torsional stiffness and can accommodate misalignments. They are commonly found in high-performance applications and precision equipment.
  3. Fluid Couplings: Fluid couplings use hydraulic fluid to transmit torque. They are suitable for applications requiring smooth start-ups and shock absorption. These couplings are often used in heavy machinery, such as conveyors and crushers.
  4. Gear Couplings: Gear couplings consist of gear teeth on the hubs that mesh with each other to transmit torque. They offer high torque capacity and can handle misalignments and shock loads. Gear couplings are commonly used in heavy-duty industrial applications.
  5. Oldham Couplings: Oldham couplings use a sliding disc in the middle to transmit torque. They provide high misalignment capacity and are used in applications where shafts are not in perfect alignment.
  6. Diaphragm Couplings: Diaphragm couplings use a thin metal diaphragm to transmit torque. They provide high torsional stiffness and can handle high speeds and misalignments. These couplings are used in applications like pumps and compressors.
  7. Beam Couplings: Beam couplings use helical cuts in a flexible beam to transmit torque. They are lightweight and have good misalignment capacity. Beam couplings are used in precision equipment and motion control applications.
  8. Universal Joints: While not a traditional hydraulic coupling, universal joints are used in fluid power transmission applications. They provide flexibility in transmitting torque at varying angles and are commonly found in drivetrains and automotive systems.

Each type of hydraulic coupling has its advantages and limitations, making them suitable for specific industrial applications based on factors like torque requirements, misalignment tolerance, and operating conditions. Proper selection and maintenance of hydraulic couplings are essential to ensure efficient power transmission and prolong the life of the machinery.

China factory Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator  China factory Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator
editor by CX 2024-01-15

China manufacturer Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator

Product Description

Quick couplers (also called quick hitches) are used with construction machines to allow the rapid change of buckets and attachments on the machine. They remove the need to use hammers to manually drive out and insert the mounting pins for attachments. They can be used on excavator, mini excavator, backhoe loader and so on.

We can supply 3 type: hydraulic type, Double lock type and Mechanical type.

                                                                                      Multi-quick hitch

Multi-Quick Coupler Specification
Model Unit RQH01D(a) RQH01D(b) RQH02D RQH04D RQH06D RQH08D RQH10D(a) RQH10D(b)
Carrier Weight T 1~2 2~4 4~6 6~8 10~15 15~27 25~32 30~36
Pin Diameter mm 30 35/40 45 50/55 60/65 70/80 90 90/100
Arm Width(W1) mm 105~125 110~135 140~180 185~220 220~270 300-340 350~390 390~420
Center To Center(A1) mm 120~140 140~215 185~290 260~320 340~430 380~490 460~530 480~550
Equipping Distance(A2) mm 120~140 140~215 185~290 260~320 340~430 380~490 460~530 480~550

Up and Down pin 

center distance(H1)

mm 125 125 165-175 200 245 275 315  
Working Pressure Bar 40~248 40~248 40~248 40~205 40~205 40~205 40~205 40~205
Oil Flow L/min 10~20 10~20 10~20 10~20 10~20 10~20 10~20 10~20
Unit Weight Kg 20 23.5 51-80 110 185 340 500  
Unit Length mm 370 400 505-610 655 820 980 1060  
Unit Width mm 220 240 275-330 312 440 510 560  
Unit High mm 210 210 265-320 335 410 490 560  
Lifting Eye Rating T 1 1 2-3 4 5 8    

We can also product hydraulic type and double lock type.

Advantages:

1. Welding Technique: 17 years experience, full welding and not easy to crack.

2. Grease Nipple: Make pin not easy to wear

3. Double Lock System: Front jaw lock and Rear safety lock make the operation much safer. Which embrace the pins tightly even if the cylinder suddenly inoperation.

4. Imported oil cylinder and not easy to damage

5. Without safety pin and excavator operator can operate  it in the cab alone.

6. Wide range of application: Compared with fixed C to C distance(A) of routine quick hitch,  multi quick hitch is more flexible. It is suitable for all attachments with the C to C distance(A) within its range. 

1. Open the cylinder, and ensure slide is fully extended with front jaw safety lock open.

2. Line up attachments and engage front attachments pin.

3. Close the cylinder. This will retract the slide mechanism and this will visibly lock the front jaw safety latch around front attachment pin.

4. Open the cylinder again. The sliding mechanism will extend and engage the rear slide hook CHINAMFG the rear attachment pin.

5. Proceed with connection test.

 

RAY ATTACHMENTS includes HangZhou CHINAMFG International Trading Company and HangZhou CHINAMFG Precision Machinery Co.,Ltd. It is a Integrated Company dedicated to production, research and development and sales of construction machinery attachments.with 17 years experience. The main products include earth auger, quick hitch, hydraulic breaker, vibro ripper and other heavy duty equipment. Our company covers an area of more than 20000 square CHINAMFG and has more than 150 employees, including professional R & D teams and Sales Department. Welcome to visit!

hydraulic coupling

What are the maintenance requirements for hydraulic couplings to ensure optimal performance?

Maintaining hydraulic couplings is crucial to ensure their optimal performance and extend their service life. Regular maintenance helps identify potential issues early on and prevents costly breakdowns. Here are the essential maintenance requirements for hydraulic couplings:

  • Inspection: Regularly inspect the hydraulic coupling for signs of wear, damage, or leaks. Check for any unusual noises, vibrations, or changes in performance during operation.
  • Lubrication: Ensure proper lubrication of the coupling’s moving parts. Use the manufacturer-recommended lubricants and follow the specified intervals for re-lubrication.
  • Coupling Alignment: Check and correct the alignment of the driving and driven shafts connected by the coupling. Misalignment can lead to premature wear and reduce coupling efficiency.
  • Bolt Tightening: Regularly check and tighten the bolts and fasteners securing the coupling. Loose bolts can lead to coupling slippage and compromised power transmission.
  • Cleanliness: Keep the hydraulic coupling and its surrounding area clean from dirt, debris, and contaminants. Clean the coupling during scheduled maintenance to prevent contamination-related issues.
  • Temperature and Pressure Checks: Monitor the operating temperature and pressure to ensure they remain within the specified limits for the coupling. Operating beyond the recommended ranges can cause damage and reduce coupling performance.
  • Overload Prevention: Avoid exceeding the rated torque capacity of the coupling to prevent overload and potential damage to the coupling or connected equipment.
  • Replacement of Worn Parts: Replace any worn or damaged components of the hydraulic coupling promptly. Follow the manufacturer’s guidelines for part replacement and use genuine spare parts when needed.
  • Periodic Maintenance: Establish a regular maintenance schedule for the hydraulic coupling based on the operating conditions and manufacturer recommendations. Adhering to this schedule helps identify and address issues before they become severe.
  • Expert Inspection: If you encounter any unusual performance issues or suspect coupling problems, consult a hydraulic system expert for a detailed inspection and analysis. They can provide valuable insights and recommendations for maintenance and repairs.

Proper and consistent maintenance of hydraulic couplings is essential to ensure their reliability, efficiency, and safe operation. By following the recommended maintenance practices, you can prolong the life of the hydraulic coupling and optimize the performance of your hydraulic system.

hydraulic coupling

Are hydraulic couplings suitable for use in hydraulic cylinders or pumps?

Yes, hydraulic couplings are commonly used in hydraulic cylinders and pumps, playing a crucial role in connecting various components within hydraulic systems. Hydraulic cylinders and pumps are essential components in hydraulic systems, responsible for generating and controlling fluid power to perform mechanical work.

Hydraulic cylinders are actuators that convert fluid pressure into linear motion, producing force and movement. They are widely used in various applications, such as construction machinery, manufacturing equipment, agricultural machinery, and automotive systems.

Hydraulic pumps, on the other hand, are responsible for generating the fluid flow and pressure required to operate hydraulic systems. They provide the driving force that enables hydraulic cylinders and other actuators to perform their intended tasks.

Hydraulic couplings are used in hydraulic cylinders and pumps to connect hoses, tubes, and other hydraulic components. They ensure a secure and leak-free connection, allowing hydraulic fluid to flow between different parts of the system. Some common coupling types used in hydraulic cylinders and pumps include:

  • JIC Fittings: JIC (Joint Industry Council) fittings, which have a 37-degree flare angle, are commonly used in high-pressure hydraulic systems, including hydraulic cylinders and pumps. They provide reliable metal-to-metal sealing and are easy to assemble and disassemble.
  • ORFS Fittings: ORFS (O-Ring Face Seal) fittings are widely used in high-pressure hydraulic applications. They provide a robust and leak-free connection through an O-ring seal in the face of the fitting.
  • NPT Fittings: NPT (National Pipe Thread) fittings, with their tapered threads, are commonly used in lower-pressure hydraulic systems, providing a reliable seal with the use of thread sealants like Teflon tape.
  • BSP Fittings: BSP (British Standard Pipe) fittings, available in parallel (BSPP) and tapered (BSPT) threads, are widely used in European hydraulic systems.

Properly selected and installed hydraulic couplings ensure the integrity of the hydraulic system, allowing efficient and reliable power transmission between hydraulic cylinders, pumps, valves, and other components. When using hydraulic couplings in hydraulic cylinders and pumps, it’s essential to consider factors such as the required pressure rating, flow capacity, material compatibility, and environmental conditions to ensure optimal performance and safety.

In summary, hydraulic couplings are essential components in hydraulic systems, making them well-suited for use in hydraulic cylinders and pumps, where they facilitate fluid flow and help maintain the integrity of the overall hydraulic system.

hydraulic coupling

What are the different types of hydraulic couplings used in various industrial applications?

Hydraulic couplings come in various types and designs to suit different industrial applications. Some of the commonly used types include:

  1. Jaw Couplings: Jaw couplings are versatile and widely used in industrial machinery. They consist of two hubs with interlocking jaws that transmit torque between the shafts. These couplings provide good misalignment capacity and vibration damping.
  2. Disc Couplings: Disc couplings use a series of thin, flexible metal discs to transmit torque. They offer high torsional stiffness and can accommodate misalignments. They are commonly found in high-performance applications and precision equipment.
  3. Fluid Couplings: Fluid couplings use hydraulic fluid to transmit torque. They are suitable for applications requiring smooth start-ups and shock absorption. These couplings are often used in heavy machinery, such as conveyors and crushers.
  4. Gear Couplings: Gear couplings consist of gear teeth on the hubs that mesh with each other to transmit torque. They offer high torque capacity and can handle misalignments and shock loads. Gear couplings are commonly used in heavy-duty industrial applications.
  5. Oldham Couplings: Oldham couplings use a sliding disc in the middle to transmit torque. They provide high misalignment capacity and are used in applications where shafts are not in perfect alignment.
  6. Diaphragm Couplings: Diaphragm couplings use a thin metal diaphragm to transmit torque. They provide high torsional stiffness and can handle high speeds and misalignments. These couplings are used in applications like pumps and compressors.
  7. Beam Couplings: Beam couplings use helical cuts in a flexible beam to transmit torque. They are lightweight and have good misalignment capacity. Beam couplings are used in precision equipment and motion control applications.
  8. Universal Joints: While not a traditional hydraulic coupling, universal joints are used in fluid power transmission applications. They provide flexibility in transmitting torque at varying angles and are commonly found in drivetrains and automotive systems.

Each type of hydraulic coupling has its advantages and limitations, making them suitable for specific industrial applications based on factors like torque requirements, misalignment tolerance, and operating conditions. Proper selection and maintenance of hydraulic couplings are essential to ensure efficient power transmission and prolong the life of the machinery.

China manufacturer Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator  China manufacturer Bucket Quick Coupling Hydraulic Multi Coupler for Mini Excavator
editor by CX 2023-11-07