China high quality CHINAMFG 1/2″ Flat Face Quick Connector Hydraulic Quick Coupler Non-Spill Coupling ISO16028

Product Description

 

ISO 16571 – NWP4 Series Quick Coupling (steel)

 

Product Feature

  1. Meet the standard ISO16571
  2. Push and pull connection
  3. With safe lock to avoid accidental disconnection
  4. Standard material: Carbon steel
  5. Standard seal: Nitrile rubber, fluoride rubber

Seal elastomer data
Seal Maximum working temperature range
Nitrile rubber -20ºC to +100ºC
Fluoride rubber -25ºC to +150ºC

Product Parameter
 

Size
(in)
ISO
(mm)
Max Working Pressure
(bar)
Rated Flow
(l/m)
Min Blast Pressure
(bar)
Fluid Loss
(ml-cc)
Connection Connection Male Female
1/4 6.3 400 12 1900 1900 1900 0.008
3/8 10 350 23 1600 1560 1780 0.01
1/2 12.5 350 45 1770 1700 1590 0.012
3/4 20 350 74 1580 1660 1420 0.015
1 25 350 100 1840 1600 1470 0.02
1-1/4 31.5 350 189 1530 1470 1400 0.03
1-1/2 40 230 288 800 700 320 0.05
2 50 150 379 600 600 280 0.1

Application Range

Hydraulic & fluid delivery
Building equipment
Agriculture machine
Multi purpose vehicle
Road vehicle
Fixed hydraulic equipment & fluid transport in factory

Interchangeability

FASTER 2FFN/2FFI series
PARKER FEM series
HANSEN FF series
AEROQUIP FD89 series

Photo Details 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

What materials, such as steel or brass, are commonly used in manufacturing hydraulic couplings?

Hydraulic couplings are manufactured using a variety of materials, and the choice of material depends on the specific application requirements and the operating conditions of the hydraulic system. Some common materials used in manufacturing hydraulic couplings include:

  • Steel: Steel is one of the most widely used materials for hydraulic couplings due to its excellent strength, durability, and resistance to wear and corrosion. Carbon steel, stainless steel, and alloy steel are commonly used to manufacture hydraulic couplings for a wide range of applications.
  • Brass: Brass is another popular material for hydraulic couplings, especially in low-pressure and non-corrosive environments. Brass couplings offer good conductivity and are commonly used in fluid systems that require electrical grounding.
  • Aluminum: Aluminum couplings are lightweight and have good corrosion resistance. They are often used in applications where weight reduction is critical, such as aerospace and marine industries.
  • Cast Iron: Cast iron couplings provide high strength and durability, making them suitable for heavy-duty industrial applications with higher pressures and temperatures.
  • Stainless Steel: Stainless steel couplings are preferred for applications where resistance to corrosion and chemical exposure is essential. They are commonly used in the food and pharmaceutical industries.
  • Plastics: Some hydraulic couplings are made from various plastics, such as polypropylene or nylon. Plastic couplings are lightweight, corrosion-resistant, and suitable for low-pressure applications.
  • Bronze: Bronze couplings offer good corrosion resistance and are commonly used in marine and offshore applications.
  • Titanium: Titanium couplings are used in specialized applications where high strength and corrosion resistance are required, such as in the chemical and petrochemical industries.

Each material has its advantages and limitations, and the selection of the appropriate material depends on factors such as the operating pressure, temperature, chemical compatibility, weight requirements, and cost considerations of the specific hydraulic system.

Manufacturers of hydraulic couplings provide detailed specifications and material options for their products, enabling users to choose the most suitable coupling material for their application needs.

hydraulic coupling

What are some real-world examples of successful hydraulic coupling installations and their benefits?

Hydraulic couplings have been successfully implemented in various real-world applications, offering significant benefits in terms of performance, efficiency, and reliability. Here are some examples of successful hydraulic coupling installations and the advantages they provided:

  • Construction Equipment: In the construction industry, hydraulic couplings are extensively used in excavators, loaders, bulldozers, and cranes. The flexibility and high torque transmission capability of hydraulic couplings ensure smooth and precise movements of heavy machinery, improving productivity and reducing wear on mechanical components. Additionally, the leak-free connections in hydraulic systems prevent fluid loss and environmental contamination.
  • Industrial Manufacturing: In manufacturing plants, hydraulic couplings are commonly found in various equipment like hydraulic presses, injection molding machines, and metal forming machinery. The instant response and controllability of hydraulic systems, enabled by high-quality couplings, allow precise positioning and repeatable operations, ensuring consistent product quality and reducing material waste.
  • Agricultural Machinery: Hydraulic couplings play a vital role in agricultural machinery, such as tractors, harvesters, and irrigation systems. The ability to handle varying loads and pressures in hydraulic couplings ensures efficient operation in different farming tasks. Moreover, the robustness and resistance to environmental factors contribute to the longevity and reliability of the agricultural equipment.
  • Mobile Equipment: Mobile hydraulic applications, including waste collection trucks, fire trucks, and utility service vehicles, benefit from hydraulic couplings’ compact design and versatility. Hydraulic systems with the right couplings offer precise control, even in confined spaces, making them suitable for diverse mobile operations.
  • Material Handling: Hydraulic couplings are integral to material handling equipment like forklifts, conveyor systems, and pallet stackers. The smooth acceleration and deceleration provided by hydraulic couplings improve safety and handling efficiency, allowing operators to maneuver heavy loads with ease.
  • Offshore and Marine: In offshore and marine applications, hydraulic couplings are used in cranes, winches, and other systems. The hermetically sealed magnetic couplings, for instance, prevent fluid leakage in critical marine environments, reducing maintenance costs and minimizing the risk of contamination in sensitive marine ecosystems.

The benefits of these successful hydraulic coupling installations include:

  • Improved Performance: Hydraulic couplings enable precise control and efficient power transmission, resulting in improved equipment performance and productivity.
  • Energy Efficiency: Hydraulic couplings with reduced pressure losses and optimized fluid flow contribute to energy savings, making hydraulic systems more environmentally friendly and cost-effective.
  • Enhanced Safety: The reliability and leak-free operation of hydraulic couplings increase operational safety, reducing the risk of accidents and equipment failures.
  • Extended Equipment Lifespan: Properly selected and maintained hydraulic couplings contribute to the longevity of hydraulic systems, reducing downtime and maintenance costs.
  • Environmental Protection: Hydraulic couplings, especially those with non-leak designs, help prevent fluid spills and reduce the impact of hydraulic systems on the environment.

These real-world examples illustrate the versatility and advantages of hydraulic couplings across different industries. The proper selection and installation of hydraulic couplings can significantly enhance the performance, efficiency, and reliability of various hydraulic systems, delivering long-term benefits for businesses and end-users alike.

hydraulic coupling

What are the different types of hydraulic couplings used in various industrial applications?

Hydraulic couplings come in various types and designs to suit different industrial applications. Some of the commonly used types include:

  1. Jaw Couplings: Jaw couplings are versatile and widely used in industrial machinery. They consist of two hubs with interlocking jaws that transmit torque between the shafts. These couplings provide good misalignment capacity and vibration damping.
  2. Disc Couplings: Disc couplings use a series of thin, flexible metal discs to transmit torque. They offer high torsional stiffness and can accommodate misalignments. They are commonly found in high-performance applications and precision equipment.
  3. Fluid Couplings: Fluid couplings use hydraulic fluid to transmit torque. They are suitable for applications requiring smooth start-ups and shock absorption. These couplings are often used in heavy machinery, such as conveyors and crushers.
  4. Gear Couplings: Gear couplings consist of gear teeth on the hubs that mesh with each other to transmit torque. They offer high torque capacity and can handle misalignments and shock loads. Gear couplings are commonly used in heavy-duty industrial applications.
  5. Oldham Couplings: Oldham couplings use a sliding disc in the middle to transmit torque. They provide high misalignment capacity and are used in applications where shafts are not in perfect alignment.
  6. Diaphragm Couplings: Diaphragm couplings use a thin metal diaphragm to transmit torque. They provide high torsional stiffness and can handle high speeds and misalignments. These couplings are used in applications like pumps and compressors.
  7. Beam Couplings: Beam couplings use helical cuts in a flexible beam to transmit torque. They are lightweight and have good misalignment capacity. Beam couplings are used in precision equipment and motion control applications.
  8. Universal Joints: While not a traditional hydraulic coupling, universal joints are used in fluid power transmission applications. They provide flexibility in transmitting torque at varying angles and are commonly found in drivetrains and automotive systems.

Each type of hydraulic coupling has its advantages and limitations, making them suitable for specific industrial applications based on factors like torque requirements, misalignment tolerance, and operating conditions. Proper selection and maintenance of hydraulic couplings are essential to ensure efficient power transmission and prolong the life of the machinery.

China high quality CHINAMFG 1/2China high quality CHINAMFG 1/2
editor by CX 2024-04-08