China Standard S1 Close Type Push and Pull Type Hydraulic Quick Coupling

Product Description

 

Product Description

Applications:

The ZM -ISOASeries bring to the industry a proven design foruse on construction equipment, forestry equipment, agricultural machinery, oil tools, oil equipment steel mill machinery, and other demanding hydraulic applications.
Socket:

IS0 PART N0 LS D HEX1 A T
6.3 ZM-1S0A-02SF 50 φ26 19 13 G1/4 NPT1/4
10 ZM-IS0A-03SF 57.1 φ31.5 22 16 G3/8 NPT3/8
12.5 ZM-IS0A-04SF 66 φ38.5 27 18 G1/2 NPT1/2
20 ZM-IS0A-06SF 82.5 φ48 34 20.5 G3/4 NPT3/4
25 ZM-1S0A-08SF 100 φ56 41 20.5 G1 NPT1

Plug:

IS0 PART N0 LP d C HEX2 A T
6.3 ZM-1S0A-02PF 38.5 11.8 15 19 13 G1/4 NPT1/4
10 ZM-IS0A-03PF 39 17.3 19 22 16 G3/8 NPT3/8
12.5 ZM-1S0A-04PF 44 20.5 29 27 18 G1/2 NPT1/2
20 2M-1S0A-06PF 55 29 29 34 20.5 G3/4 NPT3/4
25 ZM-1S0A-08PF 66 34.3 35 41 20.5 G1 NPT1

Coupling Fitting:

IS0 PART N0 L D HEX1 HEX2 T
6.3 ZM-IS0A-02 74.2 φ26 19 19 G1/4 NPT1/4
10 ZM-IS0A-03 78.5 φ31.5 22 22 G3/8 NPT3/8
12.5 ZM-IS0A-04 88.2 φ38.5 27 27 G1/2 NPT1/2
20 ZM-IS0A-06 110.4 φ48 34 34 G3/4 NPT3/4
25 ZM-I S0A-08 132.9 φ56 41 41 G1 NPT1

Detailed Photos

 

Features:

New valve design, it can resistance damage from high flow and the pressure of impulse that providing advanced performance.

·Poppet valves available to prevent uncoupled leakage.
·Poppet valves open automatically when coupled, within rated working pressure, to keep the flow expeditely.
·Critical parts are hardened for durability.
·Dependable ball-locking mechanism holds the mating halves together.
·Socket and plug are precision machined from CHINAMFG bar stock.
·New Chrome plating treatment provides advanced anti-rust performance
·ZM-ISOAseries conforms to the standard of ISO7241-A.
·Compatible with PARKER6600 Series,FASTERANV Series,AEROQUIP5600 Series and CHINAMFG HA 15000 Series

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

How do hydraulic couplings contribute to reducing vibrations and noise in hydraulic systems?

Hydraulic couplings play a crucial role in reducing vibrations and noise in hydraulic systems, providing several mechanisms that help dampen and absorb these unwanted effects. Here’s how hydraulic couplings contribute to vibration and noise reduction:

  • Torsional Flexibility: Hydraulic couplings are designed with torsional flexibility, allowing them to twist and absorb torsional vibrations that may occur during operation. As the fluid flows through the coupling, it acts as a damping medium, attenuating vibrations and minimizing their transmission to the rest of the system.
  • Vibration Isolation: The inherent flexibility of hydraulic couplings helps isolate vibrations between the driving and driven components of the hydraulic system. This isolation prevents vibrations from propagating through the system, reducing the overall vibration levels and promoting smoother operation.
  • Shock Absorption: In systems subject to sudden changes in load or pressure, hydraulic couplings can act as shock absorbers. They cushion the impact of these shock loads, preventing them from reverberating through the system and causing noise or damage to sensitive components.
  • Damping Characteristics: Hydraulic couplings, especially those utilizing a hydraulic fluid medium, exhibit excellent damping characteristics. The fluid dissipates energy by converting kinetic energy into heat energy, effectively reducing the system’s resonant vibrations and noise.
  • Smooth Power Transmission: Hydraulic couplings provide smooth power transmission between the driving and driven elements. The absence of jerks or sudden changes in torque helps in minimizing vibrations and noise generation, leading to quieter operation.
  • Compensation for Misalignments: Hydraulic couplings can compensate for certain misalignments between the shafts they connect. By accommodating misalignments, the couplings reduce the stress on the system components, mitigating vibrations that might arise from misalignment-induced forces.
  • Elimination of Metal-to-Metal Contact: In certain couplings, the use of elastomeric or flexible elements eliminates direct metal-to-metal contact between the driving and driven shafts. This reduces transmission of vibrations and noise, resulting in a quieter system.

By incorporating these vibration and noise-reducing features, hydraulic couplings enhance the overall performance and longevity of hydraulic systems. They contribute to a more pleasant working environment by minimizing noise levels and reducing the risk of fatigue failure caused by excessive vibrations. Additionally, reduced vibrations help prevent premature wear and extend the lifespan of system components, ultimately leading to cost savings and improved efficiency in industrial applications.

hydraulic coupling

Are hydraulic couplings suitable for use in hydraulic cylinders or pumps?

Yes, hydraulic couplings are commonly used in hydraulic cylinders and pumps, playing a crucial role in connecting various components within hydraulic systems. Hydraulic cylinders and pumps are essential components in hydraulic systems, responsible for generating and controlling fluid power to perform mechanical work.

Hydraulic cylinders are actuators that convert fluid pressure into linear motion, producing force and movement. They are widely used in various applications, such as construction machinery, manufacturing equipment, agricultural machinery, and automotive systems.

Hydraulic pumps, on the other hand, are responsible for generating the fluid flow and pressure required to operate hydraulic systems. They provide the driving force that enables hydraulic cylinders and other actuators to perform their intended tasks.

Hydraulic couplings are used in hydraulic cylinders and pumps to connect hoses, tubes, and other hydraulic components. They ensure a secure and leak-free connection, allowing hydraulic fluid to flow between different parts of the system. Some common coupling types used in hydraulic cylinders and pumps include:

  • JIC Fittings: JIC (Joint Industry Council) fittings, which have a 37-degree flare angle, are commonly used in high-pressure hydraulic systems, including hydraulic cylinders and pumps. They provide reliable metal-to-metal sealing and are easy to assemble and disassemble.
  • ORFS Fittings: ORFS (O-Ring Face Seal) fittings are widely used in high-pressure hydraulic applications. They provide a robust and leak-free connection through an O-ring seal in the face of the fitting.
  • NPT Fittings: NPT (National Pipe Thread) fittings, with their tapered threads, are commonly used in lower-pressure hydraulic systems, providing a reliable seal with the use of thread sealants like Teflon tape.
  • BSP Fittings: BSP (British Standard Pipe) fittings, available in parallel (BSPP) and tapered (BSPT) threads, are widely used in European hydraulic systems.

Properly selected and installed hydraulic couplings ensure the integrity of the hydraulic system, allowing efficient and reliable power transmission between hydraulic cylinders, pumps, valves, and other components. When using hydraulic couplings in hydraulic cylinders and pumps, it’s essential to consider factors such as the required pressure rating, flow capacity, material compatibility, and environmental conditions to ensure optimal performance and safety.

In summary, hydraulic couplings are essential components in hydraulic systems, making them well-suited for use in hydraulic cylinders and pumps, where they facilitate fluid flow and help maintain the integrity of the overall hydraulic system.

hydraulic coupling

How do you select the appropriate hydraulic coupling for specific fluid handling needs?

Selecting the right hydraulic coupling for specific fluid handling needs involves considering several critical factors to ensure optimal performance and reliability. Here’s a step-by-step guide to help you make an informed choice:

  1. Fluid Type: Identify the type of fluid that the coupling will handle. Different fluids have varying viscosities and chemical properties, which can impact the compatibility and material selection for the coupling.
  2. Operating Pressure and Temperature: Determine the maximum operating pressure and temperature that the coupling will experience. Ensure that the selected coupling is rated to handle the expected pressure and temperature levels without failure or deformation.
  3. Torque Requirements: Calculate the required torque capacity based on the power transmission needs of your system. Choose a coupling that can handle the anticipated torque while considering safety factors.
  4. Misalignment Tolerance: Evaluate the potential misalignments that may occur between the shafts in your system. Choose a coupling that offers sufficient misalignment tolerance to accommodate these variations without imposing excessive stress on the equipment.
  5. Vibration and Shock: Consider the level of vibration and shock the coupling will experience during operation. Select a coupling that can dampen vibrations and absorb shocks to protect the system components and ensure stable performance.
  6. Installation and Maintenance: Assess the ease of installation and maintenance requirements of the coupling. A well-designed coupling should be easy to install, inspect, and maintain, reducing downtime and maintenance costs.
  7. Environmental Factors: Take into account the environmental conditions in which the coupling will operate. Factors such as exposure to moisture, chemicals, dust, or extreme temperatures may affect the choice of coupling materials and coatings.
  8. Space Constraints: Consider the available space for installing the coupling. Some applications may have limited space, necessitating the use of compact or low-profile couplings.
  9. Coupling Type: Based on the above considerations, choose the most suitable coupling type for your specific fluid handling needs. Consider options such as jaw couplings, disc couplings, fluid couplings, gear couplings, or other specialized couplings based on your application requirements.

It’s essential to consult with coupling manufacturers or industry experts if you have specific or challenging application requirements. They can provide valuable insights and recommendations to ensure you select the right hydraulic coupling that meets your fluid handling needs and maximizes the efficiency and reliability of your system.

China Standard S1 Close Type Push and Pull Type Hydraulic Quick Coupling  China Standard S1 Close Type Push and Pull Type Hydraulic Quick Coupling
editor by CX 2024-04-11