Tag Archives: flexible pin and bush coupling

China Best Sales Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling

Product Description

Product Description

FCL flexible coupling is widely used,owing to its advantages:compact designing,easy installation,convenient maintenance,small size and light weight.As long as the relative displacement between shafts is kept within the specified tolerance,coupling will operate the best function and have a longer working life.

Size available from:90,100,112,125,140,160,180,200,224,250,280,315,355,400,450,560,630

FCL flexible coupling is widely used for its compact design, easy installation, convenient maintenance, small size and light weight. 

1. A flexible structure that is made through combining a flange with a coupling bolt.
2. Easy to attach.
3. Easy to replace the bush by just removing the coupling bolt, which makes maintenance and preservation easy.
4. Absorbs misalignment such as eccentricity and declination, and absorbs screw vibrations to prevent noise.
5. Does not transmit the thrust load.
6. Material could be customized.

Detailed Photos

Product Parameters

Packaging & Shipping

Package Standard suitable package / Pallet or container.
Polybag inside export carton outside, blister and Tape and reel package available.
If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

10-20working days ofter payment receipt comfirmed (based on actual quantity).
Packing standard export packing or according to customers demand.   

Professional goods shipping forward.

Company Profile

FAQ

Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings be used in applications involving corrosive or aggressive fluids?

Yes, hydraulic couplings can be used in applications involving corrosive or aggressive fluids, but the choice of materials and design considerations is critical to ensure compatibility and long-term performance. Corrosive fluids, such as acids, alkalis, and certain chemicals, can pose significant challenges to hydraulic systems. Here are some key factors to consider when using hydraulic couplings in such applications:

  • Material Selection: Choose hydraulic couplings made from materials that are resistant to the specific corrosive fluid being handled. Stainless steel, certain alloys, and corrosion-resistant coatings are common choices for couplings in corrosive environments.
  • Sealing Solutions: Ensure that the couplings have effective sealing solutions to prevent fluid leakage. High-quality seals and gaskets that are compatible with the corrosive fluid are essential to maintain system integrity.
  • Chemical Compatibility: Thoroughly assess the chemical compatibility between the hydraulic fluid and the coupling materials. Consider the fluid’s temperature, concentration, and potential reactions with the coupling components.
  • Special Coatings: In some cases, using hydraulic couplings with specialized coatings or treatments can enhance their resistance to corrosion and aggressive fluids.
  • Regular Inspection and Maintenance: Implement a stringent inspection and maintenance schedule to monitor the condition of the hydraulic couplings and detect any signs of corrosion or degradation. Promptly replace any damaged or worn couplings to prevent fluid leaks and system failure.
  • Fluid Contamination: Corrosive fluids can lead to the formation of contaminants in the hydraulic system. Implement effective filtration and contamination control measures to prevent particle buildup and system damage.
  • Operating Conditions: Consider the temperature, pressure, and flow conditions of the system, as these factors can impact the corrosion resistance of the couplings and the overall system performance.

While hydraulic couplings can be used in corrosive or aggressive fluid applications, it is essential to consult with coupling manufacturers or fluid system experts to ensure proper material selection and system design. They can provide guidance on selecting the most suitable hydraulic couplings and recommend additional measures to protect the system from the adverse effects of corrosive fluids.

By employing the right materials, adopting proper maintenance practices, and taking the necessary precautions, hydraulic couplings can effectively function in applications involving corrosive or aggressive fluids, providing reliable and safe fluid power transmission.

hydraulic coupling

Are hydraulic couplings suitable for use in hydraulic cylinders or pumps?

Yes, hydraulic couplings are commonly used in hydraulic cylinders and pumps, playing a crucial role in connecting various components within hydraulic systems. Hydraulic cylinders and pumps are essential components in hydraulic systems, responsible for generating and controlling fluid power to perform mechanical work.

Hydraulic cylinders are actuators that convert fluid pressure into linear motion, producing force and movement. They are widely used in various applications, such as construction machinery, manufacturing equipment, agricultural machinery, and automotive systems.

Hydraulic pumps, on the other hand, are responsible for generating the fluid flow and pressure required to operate hydraulic systems. They provide the driving force that enables hydraulic cylinders and other actuators to perform their intended tasks.

Hydraulic couplings are used in hydraulic cylinders and pumps to connect hoses, tubes, and other hydraulic components. They ensure a secure and leak-free connection, allowing hydraulic fluid to flow between different parts of the system. Some common coupling types used in hydraulic cylinders and pumps include:

  • JIC Fittings: JIC (Joint Industry Council) fittings, which have a 37-degree flare angle, are commonly used in high-pressure hydraulic systems, including hydraulic cylinders and pumps. They provide reliable metal-to-metal sealing and are easy to assemble and disassemble.
  • ORFS Fittings: ORFS (O-Ring Face Seal) fittings are widely used in high-pressure hydraulic applications. They provide a robust and leak-free connection through an O-ring seal in the face of the fitting.
  • NPT Fittings: NPT (National Pipe Thread) fittings, with their tapered threads, are commonly used in lower-pressure hydraulic systems, providing a reliable seal with the use of thread sealants like Teflon tape.
  • BSP Fittings: BSP (British Standard Pipe) fittings, available in parallel (BSPP) and tapered (BSPT) threads, are widely used in European hydraulic systems.

Properly selected and installed hydraulic couplings ensure the integrity of the hydraulic system, allowing efficient and reliable power transmission between hydraulic cylinders, pumps, valves, and other components. When using hydraulic couplings in hydraulic cylinders and pumps, it’s essential to consider factors such as the required pressure rating, flow capacity, material compatibility, and environmental conditions to ensure optimal performance and safety.

In summary, hydraulic couplings are essential components in hydraulic systems, making them well-suited for use in hydraulic cylinders and pumps, where they facilitate fluid flow and help maintain the integrity of the overall hydraulic system.

hydraulic coupling

Are there specific pressure and temperature limits for different hydraulic coupling designs?

Yes, different hydraulic coupling designs have specific pressure and temperature limits, and these limits can vary based on the coupling type and construction materials. Here are some general considerations regarding pressure and temperature limits for common hydraulic coupling designs:

  • Jaw Couplings: Jaw couplings typically have a pressure rating ranging from 1000 psi to 5000 psi (6.9 MPa to 34.5 MPa) and can handle temperatures from -20°C to 120°C (-4°F to 248°F). These couplings are suitable for various industrial applications with moderate pressure and temperature requirements.
  • Disc Couplings: Disc couplings offer higher pressure and temperature capabilities compared to jaw couplings. Their pressure rating can range from 2000 psi to 6000 psi (13.8 MPa to 41.4 MPa), and they can handle temperatures between -50°C to 150°C (-58°F to 302°F). These couplings are commonly used in high-performance and precision equipment.
  • Fluid Couplings: Fluid couplings are suitable for applications requiring smooth start-ups and shock absorption. Their pressure limits can range from 150 psi to 3000 psi (1.03 MPa to 20.7 MPa), and they can handle temperatures from -40°C to 150°C (-40°F to 302°F). These couplings are often used in heavy machinery, such as conveyors and crushers.
  • Gear Couplings: Gear couplings have a higher pressure rating, typically ranging from 2500 psi to 8000 psi (17.2 MPa to 55.2 MPa), and can handle temperatures from -20°C to 150°C (-4°F to 302°F). These couplings are commonly used in heavy-duty industrial applications with high torque requirements.
  • Oldham Couplings: Oldham couplings have pressure limits ranging from 500 psi to 3000 psi (3.4 MPa to 20.7 MPa) and can handle temperatures between -30°C to 100°C (-22°F to 212°F). They are suitable for applications where shafts are not in perfect alignment.
  • Diaphragm Couplings: Diaphragm couplings offer high pressure and temperature capabilities. Their pressure rating can range from 3000 psi to 10000 psi (20.7 MPa to 68.9 MPa), and they can handle temperatures from -50°C to 200°C (-58°F to 392°F). These couplings are commonly used in high-speed and high-temperature applications like pumps and compressors.
  • Beam Couplings: Beam couplings typically have a pressure rating ranging from 1000 psi to 4000 psi (6.9 MPa to 27.6 MPa) and can handle temperatures between -40°C to 150°C (-40°F to 302°F). They are commonly used in precision equipment and motion control applications.

It’s essential to consult the manufacturer’s specifications and guidelines for each specific hydraulic coupling design to ensure it is suitable for the intended application’s pressure and temperature requirements. Using a coupling within its specified limits ensures safe and reliable operation and maximizes the performance and lifespan of the hydraulic system.

China Best Sales Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling  China Best Sales Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling
editor by CX 2024-04-17

China OEM Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling

Product Description

Product Description

FCL flexible coupling is widely used,owing to its advantages:compact designing,easy installation,convenient maintenance,small size and light weight.As long as the relative displacement between shafts is kept within the specified tolerance,coupling will operate the best function and have a longer working life.

Size available from:90,100,112,125,140,160,180,200,224,250,280,315,355,400,450,560,630

FCL flexible coupling is widely used for its compact design, easy installation, convenient maintenance, small size and light weight. 

1. A flexible structure that is made through combining a flange with a coupling bolt.
2. Easy to attach.
3. Easy to replace the bush by just removing the coupling bolt, which makes maintenance and preservation easy.
4. Absorbs misalignment such as eccentricity and declination, and absorbs screw vibrations to prevent noise.
5. Does not transmit the thrust load.
6. Material could be customized.

Detailed Photos

Product Parameters

Packaging & Shipping

Package Standard suitable package / Pallet or container.
Polybag inside export carton outside, blister and Tape and reel package available.
If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

10-20working days ofter payment receipt comfirmed (based on actual quantity).
Packing standard export packing or according to customers demand.   

Professional goods shipping forward.

Company Profile

FAQ

Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

What materials, such as steel or brass, are commonly used in manufacturing hydraulic couplings?

Hydraulic couplings are manufactured using a variety of materials, and the choice of material depends on the specific application requirements and the operating conditions of the hydraulic system. Some common materials used in manufacturing hydraulic couplings include:

  • Steel: Steel is one of the most widely used materials for hydraulic couplings due to its excellent strength, durability, and resistance to wear and corrosion. Carbon steel, stainless steel, and alloy steel are commonly used to manufacture hydraulic couplings for a wide range of applications.
  • Brass: Brass is another popular material for hydraulic couplings, especially in low-pressure and non-corrosive environments. Brass couplings offer good conductivity and are commonly used in fluid systems that require electrical grounding.
  • Aluminum: Aluminum couplings are lightweight and have good corrosion resistance. They are often used in applications where weight reduction is critical, such as aerospace and marine industries.
  • Cast Iron: Cast iron couplings provide high strength and durability, making them suitable for heavy-duty industrial applications with higher pressures and temperatures.
  • Stainless Steel: Stainless steel couplings are preferred for applications where resistance to corrosion and chemical exposure is essential. They are commonly used in the food and pharmaceutical industries.
  • Plastics: Some hydraulic couplings are made from various plastics, such as polypropylene or nylon. Plastic couplings are lightweight, corrosion-resistant, and suitable for low-pressure applications.
  • Bronze: Bronze couplings offer good corrosion resistance and are commonly used in marine and offshore applications.
  • Titanium: Titanium couplings are used in specialized applications where high strength and corrosion resistance are required, such as in the chemical and petrochemical industries.

Each material has its advantages and limitations, and the selection of the appropriate material depends on factors such as the operating pressure, temperature, chemical compatibility, weight requirements, and cost considerations of the specific hydraulic system.

Manufacturers of hydraulic couplings provide detailed specifications and material options for their products, enabling users to choose the most suitable coupling material for their application needs.

hydraulic coupling

How do hydraulic couplings ensure efficient torque transmission and prevent fluid leaks?

Hydraulic couplings are designed with specific features to ensure efficient torque transmission and prevent fluid leaks, making them vital components in hydraulic systems. These features contribute to the overall performance and reliability of the hydraulic system. Here’s how hydraulic couplings achieve these goals:

  • High-Quality Materials: Hydraulic couplings are manufactured using high-quality materials, such as steel, stainless steel, brass, or other durable alloys. These materials offer excellent strength and wear resistance, allowing the couplings to withstand high torque and pressure loads without deforming or leaking.
  • Precision Machining: Hydraulic couplings undergo precise machining processes to achieve tight tolerances and smooth surfaces. This ensures proper alignment and mating of coupling components, minimizing energy losses and enhancing torque transmission efficiency.
  • Sealing Mechanisms: Hydraulic couplings incorporate various sealing mechanisms to prevent fluid leaks. O-rings, seals, or face seals are common sealing methods used in hydraulic couplings. When the coupling components are connected, the seals create a secure barrier, preventing hydraulic fluid from escaping the system.
  • Leak-Free Designs: Modern hydraulic couplings often feature leak-free designs that minimize the risk of fluid leakage during operation. These designs utilize advanced sealing technologies and tight tolerances to ensure a reliable and durable connection, even under high-pressure conditions.
  • Threaded Connections: Many hydraulic couplings use threaded connections, such as NPT, BSP, JIC, or SAE threads, to create a secure and leak-resistant joint. Properly tightened threaded connections maintain the integrity of the hydraulic system, reducing the likelihood of leaks.
  • Quick-Connect Couplings: Quick-connect hydraulic couplings are designed for rapid and easy connection and disconnection, often without the need for additional tools. These couplings use internal valves and seals to ensure a leak-free connection when engaged and prevent fluid leaks when disengaged.
  • Hermetically Sealed Couplings: In specific applications, hermetically sealed hydraulic couplings use magnetic coupling technology to provide a non-contact, leak-free transmission of torque and power. These couplings have no physical contact points, making them suitable for critical environments or systems handling hazardous fluids.

The combination of these design features ensures that hydraulic couplings efficiently transmit torque from one component to another while maintaining a secure and reliable seal to prevent fluid leaks. This is particularly important in hydraulic systems, where fluid leakage can lead to reduced performance, increased maintenance, and potential safety hazards.

Proper selection, installation, and maintenance of hydraulic couplings are crucial to optimize their torque transmission capabilities and prevent fluid leaks. Regular inspections and replacement of worn-out seals or damaged couplings are essential to ensure the continued efficiency and safety of the hydraulic system.

In summary, hydraulic couplings play a crucial role in efficient torque transmission and fluid sealing in hydraulic systems. Their robust construction, precision engineering, and advanced sealing technologies contribute to the overall performance and reliability of hydraulic machinery and equipment.

hydraulic coupling

What are the different types of hydraulic couplings used in various industrial applications?

Hydraulic couplings come in various types and designs to suit different industrial applications. Some of the commonly used types include:

  1. Jaw Couplings: Jaw couplings are versatile and widely used in industrial machinery. They consist of two hubs with interlocking jaws that transmit torque between the shafts. These couplings provide good misalignment capacity and vibration damping.
  2. Disc Couplings: Disc couplings use a series of thin, flexible metal discs to transmit torque. They offer high torsional stiffness and can accommodate misalignments. They are commonly found in high-performance applications and precision equipment.
  3. Fluid Couplings: Fluid couplings use hydraulic fluid to transmit torque. They are suitable for applications requiring smooth start-ups and shock absorption. These couplings are often used in heavy machinery, such as conveyors and crushers.
  4. Gear Couplings: Gear couplings consist of gear teeth on the hubs that mesh with each other to transmit torque. They offer high torque capacity and can handle misalignments and shock loads. Gear couplings are commonly used in heavy-duty industrial applications.
  5. Oldham Couplings: Oldham couplings use a sliding disc in the middle to transmit torque. They provide high misalignment capacity and are used in applications where shafts are not in perfect alignment.
  6. Diaphragm Couplings: Diaphragm couplings use a thin metal diaphragm to transmit torque. They provide high torsional stiffness and can handle high speeds and misalignments. These couplings are used in applications like pumps and compressors.
  7. Beam Couplings: Beam couplings use helical cuts in a flexible beam to transmit torque. They are lightweight and have good misalignment capacity. Beam couplings are used in precision equipment and motion control applications.
  8. Universal Joints: While not a traditional hydraulic coupling, universal joints are used in fluid power transmission applications. They provide flexibility in transmitting torque at varying angles and are commonly found in drivetrains and automotive systems.

Each type of hydraulic coupling has its advantages and limitations, making them suitable for specific industrial applications based on factors like torque requirements, misalignment tolerance, and operating conditions. Proper selection and maintenance of hydraulic couplings are essential to ensure efficient power transmission and prolong the life of the machinery.

China OEM Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling  China OEM Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling
editor by CX 2024-04-13

China Custom Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling

Product Description

Product Description

FCL flexible coupling is widely used,owing to its advantages:compact designing,easy installation,convenient maintenance,small size and light weight.As long as the relative displacement between shafts is kept within the specified tolerance,coupling will operate the best function and have a longer working life.

Size available from:90,100,112,125,140,160,180,200,224,250,280,315,355,400,450,560,630

FCL flexible coupling is widely used for its compact design, easy installation, convenient maintenance, small size and light weight. 

1. A flexible structure that is made through combining a flange with a coupling bolt.
2. Easy to attach.
3. Easy to replace the bush by just removing the coupling bolt, which makes maintenance and preservation easy.
4. Absorbs misalignment such as eccentricity and declination, and absorbs screw vibrations to prevent noise.
5. Does not transmit the thrust load.
6. Material could be customized.

Detailed Photos

Product Parameters

Packaging & Shipping

Package Standard suitable package / Pallet or container.
Polybag inside export carton outside, blister and Tape and reel package available.
If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

10-20working days ofter payment receipt comfirmed (based on actual quantity).
Packing standard export packing or according to customers demand.   

Professional goods shipping forward.

Company Profile

FAQ

Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings be used in applications involving corrosive or aggressive fluids?

Yes, hydraulic couplings can be used in applications involving corrosive or aggressive fluids, but the choice of materials and design considerations is critical to ensure compatibility and long-term performance. Corrosive fluids, such as acids, alkalis, and certain chemicals, can pose significant challenges to hydraulic systems. Here are some key factors to consider when using hydraulic couplings in such applications:

  • Material Selection: Choose hydraulic couplings made from materials that are resistant to the specific corrosive fluid being handled. Stainless steel, certain alloys, and corrosion-resistant coatings are common choices for couplings in corrosive environments.
  • Sealing Solutions: Ensure that the couplings have effective sealing solutions to prevent fluid leakage. High-quality seals and gaskets that are compatible with the corrosive fluid are essential to maintain system integrity.
  • Chemical Compatibility: Thoroughly assess the chemical compatibility between the hydraulic fluid and the coupling materials. Consider the fluid’s temperature, concentration, and potential reactions with the coupling components.
  • Special Coatings: In some cases, using hydraulic couplings with specialized coatings or treatments can enhance their resistance to corrosion and aggressive fluids.
  • Regular Inspection and Maintenance: Implement a stringent inspection and maintenance schedule to monitor the condition of the hydraulic couplings and detect any signs of corrosion or degradation. Promptly replace any damaged or worn couplings to prevent fluid leaks and system failure.
  • Fluid Contamination: Corrosive fluids can lead to the formation of contaminants in the hydraulic system. Implement effective filtration and contamination control measures to prevent particle buildup and system damage.
  • Operating Conditions: Consider the temperature, pressure, and flow conditions of the system, as these factors can impact the corrosion resistance of the couplings and the overall system performance.

While hydraulic couplings can be used in corrosive or aggressive fluid applications, it is essential to consult with coupling manufacturers or fluid system experts to ensure proper material selection and system design. They can provide guidance on selecting the most suitable hydraulic couplings and recommend additional measures to protect the system from the adverse effects of corrosive fluids.

By employing the right materials, adopting proper maintenance practices, and taking the necessary precautions, hydraulic couplings can effectively function in applications involving corrosive or aggressive fluids, providing reliable and safe fluid power transmission.

hydraulic coupling

How do hydraulic couplings ensure efficient torque transmission and prevent fluid leaks?

Hydraulic couplings are designed with specific features to ensure efficient torque transmission and prevent fluid leaks, making them vital components in hydraulic systems. These features contribute to the overall performance and reliability of the hydraulic system. Here’s how hydraulic couplings achieve these goals:

  • High-Quality Materials: Hydraulic couplings are manufactured using high-quality materials, such as steel, stainless steel, brass, or other durable alloys. These materials offer excellent strength and wear resistance, allowing the couplings to withstand high torque and pressure loads without deforming or leaking.
  • Precision Machining: Hydraulic couplings undergo precise machining processes to achieve tight tolerances and smooth surfaces. This ensures proper alignment and mating of coupling components, minimizing energy losses and enhancing torque transmission efficiency.
  • Sealing Mechanisms: Hydraulic couplings incorporate various sealing mechanisms to prevent fluid leaks. O-rings, seals, or face seals are common sealing methods used in hydraulic couplings. When the coupling components are connected, the seals create a secure barrier, preventing hydraulic fluid from escaping the system.
  • Leak-Free Designs: Modern hydraulic couplings often feature leak-free designs that minimize the risk of fluid leakage during operation. These designs utilize advanced sealing technologies and tight tolerances to ensure a reliable and durable connection, even under high-pressure conditions.
  • Threaded Connections: Many hydraulic couplings use threaded connections, such as NPT, BSP, JIC, or SAE threads, to create a secure and leak-resistant joint. Properly tightened threaded connections maintain the integrity of the hydraulic system, reducing the likelihood of leaks.
  • Quick-Connect Couplings: Quick-connect hydraulic couplings are designed for rapid and easy connection and disconnection, often without the need for additional tools. These couplings use internal valves and seals to ensure a leak-free connection when engaged and prevent fluid leaks when disengaged.
  • Hermetically Sealed Couplings: In specific applications, hermetically sealed hydraulic couplings use magnetic coupling technology to provide a non-contact, leak-free transmission of torque and power. These couplings have no physical contact points, making them suitable for critical environments or systems handling hazardous fluids.

The combination of these design features ensures that hydraulic couplings efficiently transmit torque from one component to another while maintaining a secure and reliable seal to prevent fluid leaks. This is particularly important in hydraulic systems, where fluid leakage can lead to reduced performance, increased maintenance, and potential safety hazards.

Proper selection, installation, and maintenance of hydraulic couplings are crucial to optimize their torque transmission capabilities and prevent fluid leaks. Regular inspections and replacement of worn-out seals or damaged couplings are essential to ensure the continued efficiency and safety of the hydraulic system.

In summary, hydraulic couplings play a crucial role in efficient torque transmission and fluid sealing in hydraulic systems. Their robust construction, precision engineering, and advanced sealing technologies contribute to the overall performance and reliability of hydraulic machinery and equipment.

hydraulic coupling

Are there specific pressure and temperature limits for different hydraulic coupling designs?

Yes, different hydraulic coupling designs have specific pressure and temperature limits, and these limits can vary based on the coupling type and construction materials. Here are some general considerations regarding pressure and temperature limits for common hydraulic coupling designs:

  • Jaw Couplings: Jaw couplings typically have a pressure rating ranging from 1000 psi to 5000 psi (6.9 MPa to 34.5 MPa) and can handle temperatures from -20°C to 120°C (-4°F to 248°F). These couplings are suitable for various industrial applications with moderate pressure and temperature requirements.
  • Disc Couplings: Disc couplings offer higher pressure and temperature capabilities compared to jaw couplings. Their pressure rating can range from 2000 psi to 6000 psi (13.8 MPa to 41.4 MPa), and they can handle temperatures between -50°C to 150°C (-58°F to 302°F). These couplings are commonly used in high-performance and precision equipment.
  • Fluid Couplings: Fluid couplings are suitable for applications requiring smooth start-ups and shock absorption. Their pressure limits can range from 150 psi to 3000 psi (1.03 MPa to 20.7 MPa), and they can handle temperatures from -40°C to 150°C (-40°F to 302°F). These couplings are often used in heavy machinery, such as conveyors and crushers.
  • Gear Couplings: Gear couplings have a higher pressure rating, typically ranging from 2500 psi to 8000 psi (17.2 MPa to 55.2 MPa), and can handle temperatures from -20°C to 150°C (-4°F to 302°F). These couplings are commonly used in heavy-duty industrial applications with high torque requirements.
  • Oldham Couplings: Oldham couplings have pressure limits ranging from 500 psi to 3000 psi (3.4 MPa to 20.7 MPa) and can handle temperatures between -30°C to 100°C (-22°F to 212°F). They are suitable for applications where shafts are not in perfect alignment.
  • Diaphragm Couplings: Diaphragm couplings offer high pressure and temperature capabilities. Their pressure rating can range from 3000 psi to 10000 psi (20.7 MPa to 68.9 MPa), and they can handle temperatures from -50°C to 200°C (-58°F to 392°F). These couplings are commonly used in high-speed and high-temperature applications like pumps and compressors.
  • Beam Couplings: Beam couplings typically have a pressure rating ranging from 1000 psi to 4000 psi (6.9 MPa to 27.6 MPa) and can handle temperatures between -40°C to 150°C (-40°F to 302°F). They are commonly used in precision equipment and motion control applications.

It’s essential to consult the manufacturer’s specifications and guidelines for each specific hydraulic coupling design to ensure it is suitable for the intended application’s pressure and temperature requirements. Using a coupling within its specified limits ensures safe and reliable operation and maximizes the performance and lifespan of the hydraulic system.

China Custom Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling  China Custom Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling
editor by CX 2024-04-11

China factory Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling

Product Description

Product Description

FCL flexible coupling is widely used,owing to its advantages:compact designing,easy installation,convenient maintenance,small size and light weight.As long as the relative displacement between shafts is kept within the specified tolerance,coupling will operate the best function and have a longer working life.

Size available from:90,100,112,125,140,160,180,200,224,250,280,315,355,400,450,560,630

FCL flexible coupling is widely used for its compact design, easy installation, convenient maintenance, small size and light weight. 

1. A flexible structure that is made through combining a flange with a coupling bolt.
2. Easy to attach.
3. Easy to replace the bush by just removing the coupling bolt, which makes maintenance and preservation easy.
4. Absorbs misalignment such as eccentricity and declination, and absorbs screw vibrations to prevent noise.
5. Does not transmit the thrust load.
6. Material could be customized.

Detailed Photos

Product Parameters

Packaging & Shipping

Package Standard suitable package / Pallet or container.
Polybag inside export carton outside, blister and Tape and reel package available.
If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

10-20working days ofter payment receipt comfirmed (based on actual quantity).
Packing standard export packing or according to customers demand.   

Professional goods shipping forward.

Company Profile

FAQ

Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings handle both angular and axial misalignments simultaneously?

Yes, hydraulic couplings are designed to handle both angular and axial misalignments simultaneously. These couplings have inherent flexibility in their design, allowing them to accommodate various types of misalignments between the driving and driven shafts.

Angular misalignment occurs when the axes of the two shafts are not collinear, resulting in an angle between them. Axial misalignment, on the other hand, refers to the offset between the two shafts along their axis. Hydraulic couplings can compensate for these misalignments without sacrificing their ability to transmit torque efficiently.

The design of hydraulic couplings typically includes features such as flexible elements, torsional flexibility, or a fluid medium that allows the coupling to absorb and compensate for misalignments. When misalignment occurs, the flexible elements or fluid within the coupling act as a buffer, transmitting torque smoothly and reducing stress on the connected components.

By accommodating both angular and axial misalignments, hydraulic couplings offer several advantages in various applications:

  • Reduced Wear: Hydraulic couplings’ ability to handle misalignments helps reduce wear and tear on the shafts, bearings, and other components, prolonging the life of the equipment.
  • Smooth Operation: The ability to compensate for misalignments results in smoother operation and reduced vibrations, contributing to overall system performance and precision.
  • Overload Protection: Hydraulic couplings can provide overload protection by allowing slippage when torque exceeds the coupling’s capacity, protecting the system from damage.
  • Shock Absorption: In systems subject to shock loads or sudden changes in torque, hydraulic couplings can absorb and dampen these shocks, preventing damage to the equipment.
  • Maintenance Reduction: By minimizing stress on the system components, hydraulic couplings can help reduce maintenance requirements and downtime.

It is important to note that the extent of misalignment accommodation may vary depending on the specific design and type of hydraulic coupling. Manufacturers provide guidelines and specifications for each coupling, including the maximum allowable misalignments.

Overall, hydraulic couplings’ ability to handle both angular and axial misalignments simultaneously makes them a versatile choice for various industrial applications where precision, efficiency, and reliable power transmission are essential.

hydraulic coupling

Are hydraulic couplings suitable for use in hydraulic cylinders or pumps?

Yes, hydraulic couplings are commonly used in hydraulic cylinders and pumps, playing a crucial role in connecting various components within hydraulic systems. Hydraulic cylinders and pumps are essential components in hydraulic systems, responsible for generating and controlling fluid power to perform mechanical work.

Hydraulic cylinders are actuators that convert fluid pressure into linear motion, producing force and movement. They are widely used in various applications, such as construction machinery, manufacturing equipment, agricultural machinery, and automotive systems.

Hydraulic pumps, on the other hand, are responsible for generating the fluid flow and pressure required to operate hydraulic systems. They provide the driving force that enables hydraulic cylinders and other actuators to perform their intended tasks.

Hydraulic couplings are used in hydraulic cylinders and pumps to connect hoses, tubes, and other hydraulic components. They ensure a secure and leak-free connection, allowing hydraulic fluid to flow between different parts of the system. Some common coupling types used in hydraulic cylinders and pumps include:

  • JIC Fittings: JIC (Joint Industry Council) fittings, which have a 37-degree flare angle, are commonly used in high-pressure hydraulic systems, including hydraulic cylinders and pumps. They provide reliable metal-to-metal sealing and are easy to assemble and disassemble.
  • ORFS Fittings: ORFS (O-Ring Face Seal) fittings are widely used in high-pressure hydraulic applications. They provide a robust and leak-free connection through an O-ring seal in the face of the fitting.
  • NPT Fittings: NPT (National Pipe Thread) fittings, with their tapered threads, are commonly used in lower-pressure hydraulic systems, providing a reliable seal with the use of thread sealants like Teflon tape.
  • BSP Fittings: BSP (British Standard Pipe) fittings, available in parallel (BSPP) and tapered (BSPT) threads, are widely used in European hydraulic systems.

Properly selected and installed hydraulic couplings ensure the integrity of the hydraulic system, allowing efficient and reliable power transmission between hydraulic cylinders, pumps, valves, and other components. When using hydraulic couplings in hydraulic cylinders and pumps, it’s essential to consider factors such as the required pressure rating, flow capacity, material compatibility, and environmental conditions to ensure optimal performance and safety.

In summary, hydraulic couplings are essential components in hydraulic systems, making them well-suited for use in hydraulic cylinders and pumps, where they facilitate fluid flow and help maintain the integrity of the overall hydraulic system.

hydraulic coupling

How do hydraulic couplings accommodate misalignment and prevent overload during operation?

Hydraulic couplings are designed to accommodate misalignment and prevent overload during operation, ensuring smooth and efficient power transmission. Here’s how they achieve this:

  1. Misalignment Accommodation: Hydraulic couplings can handle different types of misalignment between the driving and driven shafts. This includes angular misalignment, radial misalignment, and axial misalignment. The design of the coupling allows it to flex and compensate for these misalignments, reducing stress on the system components and preventing premature wear.
  2. Torsional Flexibility: Hydraulic couplings offer torsional flexibility, which means they can twist and absorb torsional vibrations that may occur during operation. This capability helps to dampen vibrations and reduce the impact of shock loads on the system, enhancing the overall performance and protecting sensitive components.
  3. Slip Mechanism: In applications where overload protection is critical, some hydraulic couplings feature a slip mechanism. When the torque exceeds a certain threshold, the coupling slips, disengaging the driving and driven elements. This slip mechanism prevents damage to the system and its components by acting as a safety feature under high-load conditions.
  4. Hydraulic Fluid Damping: The hydraulic fluid present in the coupling acts as a damping medium. When torque is transmitted from the driving element to the driven element, the fluid dampens the transmission of vibrations, providing a smoother and quieter operation while reducing wear and tear.
  5. Gradual Start-up: During system start-up, hydraulic couplings provide gradual power transmission. As the fluid flow builds up and pressure increases, the coupling gradually engages, minimizing the shock and stress on the system. This gradual start-up is particularly beneficial for systems with heavy loads and delicate components.
  6. Continuous Power Transmission: Hydraulic couplings maintain continuous power transmission even when there are slight misalignments or variations in operating conditions. The ability to accommodate misalignments and fluctuations in torque allows the system to operate reliably and efficiently over time.

By accommodating misalignments, damping vibrations, and providing overload protection, hydraulic couplings ensure the smooth and reliable operation of hydraulic systems. Their versatility and adaptability make them suitable for a wide range of industrial applications, where precision, efficiency, and protection against shock loads are essential requirements.

China factory Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling  China factory Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling
editor by CX 2024-03-02

China Good quality Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling

Product Description

Product Description

FCL flexible coupling is widely used,owing to its advantages:compact designing,easy installation,convenient maintenance,small size and light weight.As long as the relative displacement between shafts is kept within the specified tolerance,coupling will operate the best function and have a longer working life.

Size available from:90,100,112,125,140,160,180,200,224,250,280,315,355,400,450,560,630

FCL flexible coupling is widely used for its compact design, easy installation, convenient maintenance, small size and light weight. 

1. A flexible structure that is made through combining a flange with a coupling bolt.
2. Easy to attach.
3. Easy to replace the bush by just removing the coupling bolt, which makes maintenance and preservation easy.
4. Absorbs misalignment such as eccentricity and declination, and absorbs screw vibrations to prevent noise.
5. Does not transmit the thrust load.
6. Material could be customized.

Detailed Photos

Product Parameters

Packaging & Shipping

Package Standard suitable package / Pallet or container.
Polybag inside export carton outside, blister and Tape and reel package available.
If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

10-20working days ofter payment receipt comfirmed (based on actual quantity).
Packing standard export packing or according to customers demand.   

Professional goods shipping forward.

Company Profile

FAQ

Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Are there specialized hydraulic couplings for high-pressure or high-flow applications?

Yes, there are specialized hydraulic couplings designed to meet the demands of high-pressure and high-flow applications. These specialized couplings are engineered to handle the increased loads, pressures, and flow rates typically encountered in industrial settings where heavy-duty equipment and machinery are used. Here are some types of hydraulic couplings commonly used in such applications:

  • High-Pressure Hydraulic Couplings: High-pressure hydraulic couplings are constructed with robust materials and advanced sealing technologies to withstand extreme pressure levels. They are commonly used in hydraulic systems that operate at pressures exceeding standard hydraulic system limits. These couplings ensure reliable power transmission and prevent leakage or failure under high-pressure conditions.
  • Quick-Disconnect Couplings: Quick-disconnect couplings, also known as quick-release or quick-connect couplings, are designed for rapid and efficient connection and disconnection of hydraulic lines. They are prevalent in high-flow applications where frequent connections and disconnections are necessary, such as in construction equipment, agricultural machinery, and manufacturing processes.
  • Multi-Couplings: Multi-couplings allow the simultaneous connection of multiple hydraulic lines with a single motion. These couplings are suitable for applications with complex hydraulic circuits, such as material handling systems and mobile hydraulics. They simplify the connection process and minimize downtime during equipment setup or maintenance.
  • High-Flow Hydraulic Couplings: High-flow hydraulic couplings are designed to accommodate large volumetric flow rates in hydraulic systems. They feature larger passageways and flow channels to reduce pressure drop and ensure efficient fluid transfer in applications like heavy machinery, material handling, and large-scale industrial processes.
  • Flush Face Couplings: Flush face couplings provide a leak-free connection when connected or disconnected. They are suitable for high-pressure applications where minimizing fluid loss during connection and disconnection is critical for safety and environmental reasons.
  • Flat Face Couplings: Flat face couplings are ideal for high-pressure applications where cleanliness and contamination control are essential. Their flat mating surfaces prevent trapping debris during connection, making them suitable for construction equipment, mining machinery, and other rugged applications.
  • High-Temperature Hydraulic Couplings: High-temperature hydraulic couplings are designed to operate in extreme temperature environments, such as those encountered in hot industrial processes or near machinery generating significant heat. They use specialized seals and materials that can withstand elevated temperatures without compromising performance.

Specialized hydraulic couplings are engineered to handle the unique challenges posed by high-pressure or high-flow applications, ensuring safe, efficient, and reliable operation in demanding industrial environments. When selecting a hydraulic coupling for such applications, it’s crucial to consider factors like the specific pressure and flow requirements, environmental conditions, compatibility with the hydraulic fluid, and the overall system design to achieve optimal performance and safety.

hydraulic coupling

Where can I find reputable suppliers or manufacturers of hydraulic couplings for my specific hydraulic system requirements?

Finding reputable suppliers or manufacturers of hydraulic couplings is essential to ensure the quality, performance, and compatibility of the couplings with your specific hydraulic system requirements. Here are some methods and sources to help you locate reliable hydraulic coupling suppliers:

  1. Online Directories and Marketplaces: Utilize online industrial directories and marketplaces that list hydraulic coupling manufacturers and suppliers. Websites like ThomasNet, Alibaba, and IndustryNet can provide comprehensive listings with company profiles and product offerings.
  2. Trade Shows and Exhibitions: Attend trade shows and exhibitions focused on fluid power and hydraulic components. These events offer an opportunity to meet suppliers in person, see product demonstrations, and discuss your specific requirements directly with the manufacturers.
  3. Industry Associations: Many industry associations, such as the International Fluid Power Society (IFPS) or the National Fluid Power Association (NFPA), maintain directories of member companies that offer hydraulic couplings and related products. These associations often have strict membership criteria, which can serve as a marker of reputable companies.
  4. Online Search Engines: Conduct a targeted search using online search engines. Use specific keywords related to your hydraulic system requirements, such as “high-pressure hydraulic couplings” or “quick-connect hydraulic couplings,” along with your location to find local suppliers.
  5. Manufacturer Websites: Visit the websites of well-known hydraulic coupling manufacturers. Reputable manufacturers often provide detailed product information, specifications, and contact details, making it easier to assess their suitability for your requirements.
  6. Customer Reviews and Testimonials: Look for customer reviews and testimonials to gauge the reputation and customer satisfaction of potential hydraulic coupling suppliers. Positive feedback from other customers can be an indicator of reliable and reputable manufacturers.

When evaluating hydraulic coupling suppliers, consider the following factors to ensure they meet your specific requirements:

  • Product Range: Check if the supplier offers a diverse range of hydraulic couplings, including the types, sizes, and configurations that match your needs.
  • Quality Assurance: Inquire about the supplier’s quality control processes and certifications to ensure their hydraulic couplings meet industry standards and regulatory requirements.
  • Customization Options: If your hydraulic system requires specialized couplings, confirm if the supplier can provide customization options to meet your unique specifications.
  • Technical Support: Assess the supplier’s technical expertise and support capabilities to assist with product selection, installation, and troubleshooting.
  • Pricing and Delivery: Obtain competitive pricing and inquire about delivery lead times to ensure the supplier can meet your budget and project timelines.
  • After-Sales Service: Inquire about the supplier’s after-sales service, warranty policies, and availability of spare parts to ensure long-term support for your hydraulic couplings.

By conducting thorough research and due diligence, you can find reputable suppliers or manufacturers of hydraulic couplings that align with your specific hydraulic system requirements. Working with reliable suppliers will help you obtain high-quality couplings that contribute to the efficient and reliable operation of your hydraulic system.

hydraulic coupling

What are the key design considerations when using hydraulic couplings in hydraulic systems?

Designing hydraulic systems with hydraulic couplings requires careful consideration of various factors to ensure optimal performance, reliability, and safety. Here are the key design considerations:

  1. Fluid Compatibility: Select hydraulic couplings made from materials compatible with the hydraulic fluid used in the system. Incompatible materials may lead to chemical reactions, corrosion, or degradation of the coupling, affecting its performance and service life.
  2. Pressure Rating: Ensure that the hydraulic coupling has an adequate pressure rating to handle the maximum operating pressure of the hydraulic system. Using a coupling with a lower pressure rating may lead to failure and system leaks.
  3. Temperature Range: Consider the temperature range in which the hydraulic system will operate. Choose a hydraulic coupling that can withstand the minimum and maximum temperatures without deformation or loss of performance.
  4. Torsional Stiffness: Evaluate the required torsional stiffness of the coupling based on the system’s torque demands. A coupling with insufficient torsional stiffness may lead to excessive vibrations and decreased system accuracy.
  5. Misalignment Compensation: Hydraulic couplings should be able to accommodate misalignments between the driving and driven shafts. Consider the angular, radial, and axial misalignment capacity of the coupling to prevent excessive stress on the system components.
  6. Speed and Torque Requirements: Determine the speed and torque demands of the hydraulic system. Choose a coupling that can handle the required torque and rotational speed to ensure efficient power transmission.
  7. Environmental Conditions: Factor in the environmental conditions the hydraulic system will be exposed to, such as moisture, dust, chemicals, or extreme temperatures. Select a coupling with appropriate coatings or materials to withstand these conditions.
  8. Overload Protection: Consider whether overload protection is necessary for the hydraulic system. Some hydraulic couplings offer built-in overload protection features, which can be beneficial in preventing damage during unexpected load spikes.
  9. Installation and Maintenance: Choose a hydraulic coupling that is easy to install and maintain. Accessible coupling designs simplify inspection and servicing, reducing downtime and maintenance costs.
  10. Size and Weight: Consider the available space and weight constraints in the system. Opt for a hydraulic coupling that fits within the available space and meets the weight limitations without compromising performance.

By carefully considering these design considerations and selecting the appropriate hydraulic coupling, designers can ensure a reliable and efficient hydraulic system that meets the specific requirements of the application. Regular maintenance and proper coupling installation also play a crucial role in prolonging the life and performance of the hydraulic system.

China Good quality Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling  China Good quality Pin and Bush Coupling FCL Type Standard Hydraulic Flexible Coupling
editor by CX 2023-12-27