Tag Archives: excavator hydraulic parts

China Professional Excavator Parts Coupling Main Hydraulic Pump Coupling Assy Dl550-5

Product Description

Excavator Parts Coupling Main Hydraulic Pump Coupling Assy DL550-5
 

Basic information:

 

Type  Coupling
Trademark YNF/Y&F
MOQ No limited
Structure AS/A/Bowex/Gear
Used For Excavator
Sales type Retail, Wholesale
Material Natural Rubber
Advantage Flexible, Lower Noise
Condition OEM/Original

Product show as below:

 About us:

specialized in:

couplings, rubber mounts, gera parts, hydraulic seals and seal kits for hydraulic hammers, rock breakers, hydraulic excavators,wheel loaders, and JCB badkhoe loaders.

 

And, Our company also supply:

Engine parts, hydraulic piston pump and hydraulic travel motor, Swing motor assembly and hydraulic component parts, electric parts, etc. Hydraulic hammer breaker parts with piston, cylinder, chisel, through bolt, side bolt, top bush, front head bushing,accumlator, valve, etc.

We always try our best for all our customers and make it better and better. Welcome!

FAQ

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

How do hydraulic couplings contribute to reducing vibrations and noise in hydraulic systems?

Hydraulic couplings play a crucial role in reducing vibrations and noise in hydraulic systems, providing several mechanisms that help dampen and absorb these unwanted effects. Here’s how hydraulic couplings contribute to vibration and noise reduction:

  • Torsional Flexibility: Hydraulic couplings are designed with torsional flexibility, allowing them to twist and absorb torsional vibrations that may occur during operation. As the fluid flows through the coupling, it acts as a damping medium, attenuating vibrations and minimizing their transmission to the rest of the system.
  • Vibration Isolation: The inherent flexibility of hydraulic couplings helps isolate vibrations between the driving and driven components of the hydraulic system. This isolation prevents vibrations from propagating through the system, reducing the overall vibration levels and promoting smoother operation.
  • Shock Absorption: In systems subject to sudden changes in load or pressure, hydraulic couplings can act as shock absorbers. They cushion the impact of these shock loads, preventing them from reverberating through the system and causing noise or damage to sensitive components.
  • Damping Characteristics: Hydraulic couplings, especially those utilizing a hydraulic fluid medium, exhibit excellent damping characteristics. The fluid dissipates energy by converting kinetic energy into heat energy, effectively reducing the system’s resonant vibrations and noise.
  • Smooth Power Transmission: Hydraulic couplings provide smooth power transmission between the driving and driven elements. The absence of jerks or sudden changes in torque helps in minimizing vibrations and noise generation, leading to quieter operation.
  • Compensation for Misalignments: Hydraulic couplings can compensate for certain misalignments between the shafts they connect. By accommodating misalignments, the couplings reduce the stress on the system components, mitigating vibrations that might arise from misalignment-induced forces.
  • Elimination of Metal-to-Metal Contact: In certain couplings, the use of elastomeric or flexible elements eliminates direct metal-to-metal contact between the driving and driven shafts. This reduces transmission of vibrations and noise, resulting in a quieter system.

By incorporating these vibration and noise-reducing features, hydraulic couplings enhance the overall performance and longevity of hydraulic systems. They contribute to a more pleasant working environment by minimizing noise levels and reducing the risk of fatigue failure caused by excessive vibrations. Additionally, reduced vibrations help prevent premature wear and extend the lifespan of system components, ultimately leading to cost savings and improved efficiency in industrial applications.

hydraulic coupling

Are hydraulic couplings suitable for use in hydraulic cylinders or pumps?

Yes, hydraulic couplings are commonly used in hydraulic cylinders and pumps, playing a crucial role in connecting various components within hydraulic systems. Hydraulic cylinders and pumps are essential components in hydraulic systems, responsible for generating and controlling fluid power to perform mechanical work.

Hydraulic cylinders are actuators that convert fluid pressure into linear motion, producing force and movement. They are widely used in various applications, such as construction machinery, manufacturing equipment, agricultural machinery, and automotive systems.

Hydraulic pumps, on the other hand, are responsible for generating the fluid flow and pressure required to operate hydraulic systems. They provide the driving force that enables hydraulic cylinders and other actuators to perform their intended tasks.

Hydraulic couplings are used in hydraulic cylinders and pumps to connect hoses, tubes, and other hydraulic components. They ensure a secure and leak-free connection, allowing hydraulic fluid to flow between different parts of the system. Some common coupling types used in hydraulic cylinders and pumps include:

  • JIC Fittings: JIC (Joint Industry Council) fittings, which have a 37-degree flare angle, are commonly used in high-pressure hydraulic systems, including hydraulic cylinders and pumps. They provide reliable metal-to-metal sealing and are easy to assemble and disassemble.
  • ORFS Fittings: ORFS (O-Ring Face Seal) fittings are widely used in high-pressure hydraulic applications. They provide a robust and leak-free connection through an O-ring seal in the face of the fitting.
  • NPT Fittings: NPT (National Pipe Thread) fittings, with their tapered threads, are commonly used in lower-pressure hydraulic systems, providing a reliable seal with the use of thread sealants like Teflon tape.
  • BSP Fittings: BSP (British Standard Pipe) fittings, available in parallel (BSPP) and tapered (BSPT) threads, are widely used in European hydraulic systems.

Properly selected and installed hydraulic couplings ensure the integrity of the hydraulic system, allowing efficient and reliable power transmission between hydraulic cylinders, pumps, valves, and other components. When using hydraulic couplings in hydraulic cylinders and pumps, it’s essential to consider factors such as the required pressure rating, flow capacity, material compatibility, and environmental conditions to ensure optimal performance and safety.

In summary, hydraulic couplings are essential components in hydraulic systems, making them well-suited for use in hydraulic cylinders and pumps, where they facilitate fluid flow and help maintain the integrity of the overall hydraulic system.

hydraulic coupling

What is a hydraulic coupling, and how does it function in fluid power transmission?

A hydraulic coupling is a mechanical device used in fluid power systems to transmit power from one shaft to another, often at different angles or distances. It facilitates the transfer of hydraulic energy from a prime mover, such as an electric motor or an internal combustion engine, to various hydraulic components, such as pumps, actuators, and cylinders.

The main function of a hydraulic coupling is to transmit rotational motion and power while accommodating misalignments and torsional vibrations. It acts as a link between the driving and driven shafts, ensuring that the hydraulic system operates smoothly and efficiently.

Hydraulic couplings operate based on the principle of hydraulic fluid transmission. The coupling consists of two main parts, the input (driving) and output (driven) elements, both of which have specially designed vanes or blades. These vanes are submerged in hydraulic fluid.

When the input element rotates, it creates a flow of hydraulic fluid around the vanes, which in turn generates pressure on the output element. The pressure difference between the two elements causes the output element to start rotating, effectively transmitting power from the input shaft to the output shaft.

Hydraulic couplings are advantageous in various applications due to their ability to:

  1. Isolate Shock Loads: They can isolate and dampen shock loads and torsional vibrations, protecting sensitive components from sudden jolts and improving overall system performance.
  2. Accommodate Misalignment: Hydraulic couplings can accommodate misalignment between the input and output shafts, reducing wear and tear on the system and extending the lifespan of the components.
  3. Provide Overload Protection: They offer overload protection by slipping or disengaging when the torque exceeds a certain threshold, preventing damage to the system and its components.
  4. Start-Up Assistance: Hydraulic couplings can provide smooth start-up assistance, gradually transmitting power as the fluid builds up pressure, minimizing shock and stress during system startup.
  5. Reduce Noise and Vibration: By dampening vibrations and shock loads, hydraulic couplings contribute to quieter and smoother operation of fluid power systems.

Overall, hydraulic couplings play a critical role in fluid power transmission, ensuring efficient power transfer, protecting components from shocks and vibrations, and enhancing the overall performance and reliability of hydraulic systems in various industrial and mobile applications.

China Professional Excavator Parts Coupling Main Hydraulic Pump Coupling Assy Dl550-5  China Professional Excavator Parts Coupling Main Hydraulic Pump Coupling Assy Dl550-5
editor by CX 2024-05-06

China Professional Crawler Excavator Hydraulic Excavator Spare Parts Coupling for 90h Coupling

Product Description

Crawler Excavator Hydraulic Excavator Spare Parts Coupling For 110H COUPLING

Our Main products :  cylinder block,cylinder head,crankshaft,camshaft,connecting rod,connecting rod bearing,valve,plunger,nozzle,exhaust valve,engine assy,feed pump,fan blade,gasket kit,glow plug/engine preheater,intake valve,liner,liner kit/rebuild kit,main bearing/crankshaft bearing,nozzle,nozzle piping,oil pump,piston,piston pin,piston ring,plunger,seat ,thrust bearing,valve guide,valve seat,valve seal,gasket full set ,water pump , turbocharger,genarator, starter,sensor…
 

USE FOR EXCAVATOR
MODEL  EXCAVATORS
PART NUMBER COUPLING 
BRAND NORMAL

Why choose our company?
——Company information 

HangZhou Marun Machinery Equipment Co., Ltd is located in HangZhou China,Our company 
established in 2008, it’s parent company -HangZhou Qipeng Machinery  Equipment Co,.Ltd. We are authorized agent of Isuzu,Mitsubishi,Yanmar and Mahle in China, agent of Isuzu since it founded in 1990 ,specialized in excavator engine spare parts ,engine assembly and  construction machinery for 30 years.

About CHINAMFG :

As a largest, most varieties and professional,leading ISUZU agent in China, we offer a full range of genuine ISUZU engine accessories and complete engine.The business scope are as follows:
Engine model:4JB1,C240,4BD1,4LE1,4LE2,4JG1,4JG2,4BD1,4BG1,4HK1,6HK1,6BD1,6BG1,6SD1,6RB1,6UZ1,6WG1.

Besides , we also can supply parts for machines like SUMITOMO,CASE,KOBELCO ,MITSUBISHI,CUMMINS ,KAWASAKI and so on 

About MITSUBISHI :
we mainly offer 2 engine model 4M50 and 6M60 engine parts for CHINAMFG so far , but also can check other engine model Like 6D16,6D24 and so on , now we are stock available for overhaul engine parts :Cylinder block,cylinder head,crankshaft,camshaft,connecting rod,connecting rod bearing,valve,plunger,nozzle,exhaust valve,engine assy,feed pump,fan blade,gasket kit,glow plug/engine preheater,intake valve,liner,liner kit/rebuild kit,main bearing/crankshaft bearing,nozzle,nozzle piping,oil pump,piston,piston pin,piston ring,plunger,seat ,thrust bearing,valve guide,valve seat,valve seal,gasket full set ,water pump , turbocharger,genarator, starter,sensor…

About CHINAMFG :

As we all knows,if there were only two cars in the world, then one must use MAHLE spare parts.It’s products range cover construction machinery  engine parts and auto engine parts,parts including:piston/cylinder/liner kit/valves/bearings/gasket kit/piston ring/filter .Apply to ISUZU,KOBELCO,CATER,KOMATSU,CUMMINS,MITSUBISHI,HINO,DEUTZ and so on .

CHINAMFG parts for engines: C9,C7,DE12T ,D2366,DE08 ,D1146T,DB58 ,4JG1 ,6BG1-3,6BG1-4,4HK1 ,6HK1,S6K,6D34,6D102,6D107,6D114,J05E,D6D,D7E,4TNV94,4TNV98,4D95,S4D95,PC130-7,6D95-5,6D95-6

——Company Advantages

1. We have profession knowledge about engine parts ,more than 20 years experience in engine parts.

2. We can offer new and used genuine parts, oem, good quality made in china parts to you.

3. The genuine parts will give weight,price when quotation.

4. Genuine stock pictures will send if you need .

5.All parts can check with part number,all parts can order follow part number.

6. Quick delivery time,will delivery the goods within 3 days. 

7. Safe packing to protect the goods, such as wooden box, Iron sheet for our parts.

8. Small quantity can accept.

——FAQ:

Q1:How long is the warranted time?
For natural broken, 3 months. Guarantee genuine parts.
 
Q2: What’s payment you can accept?
T/T, WESTERN UNION, CHINESE BANK,
 
Q3: What’s package? Can you give me the package according my requirement?
Yes, Original packing or Neutral packing with wooden box or carton
 
Q4: How about the lead time?
1) Stock available: 1-3days.
2) Out of stock: It’s according to your quantity, and we have cooperated with factory. 
We will let you know when we quote.
 
Q5: What’s the shipping way you can offer?
1) Big order: By sea or by air.(It can reduce the costs)
2) Small order: DHL, TNT, UPS, FEDEX, EMS,
 
Q6: Whta’s the terms of the transaction?
EXW, FCA, FAS, FOB, C&F, CIF, CPT, CIP, DAF, DES,DDP.
 
Q7: Do you accept small order?
Yes, small order can accept.
 
Q8: What’s brand you can offer in your company?
1) OEM, 100% GENUINE PARTS, COPY(Made in China)
2) GENUINE PARTS.

We are seeking the chances to meet all the friends both from at home and abroad for the CHINAMFG cooperation.
We sincerely hope to have long-term cooperation with all of you on the bases of mutual benefit and common development.

,

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings be used in applications involving corrosive or aggressive fluids?

Yes, hydraulic couplings can be used in applications involving corrosive or aggressive fluids, but the choice of materials and design considerations is critical to ensure compatibility and long-term performance. Corrosive fluids, such as acids, alkalis, and certain chemicals, can pose significant challenges to hydraulic systems. Here are some key factors to consider when using hydraulic couplings in such applications:

  • Material Selection: Choose hydraulic couplings made from materials that are resistant to the specific corrosive fluid being handled. Stainless steel, certain alloys, and corrosion-resistant coatings are common choices for couplings in corrosive environments.
  • Sealing Solutions: Ensure that the couplings have effective sealing solutions to prevent fluid leakage. High-quality seals and gaskets that are compatible with the corrosive fluid are essential to maintain system integrity.
  • Chemical Compatibility: Thoroughly assess the chemical compatibility between the hydraulic fluid and the coupling materials. Consider the fluid’s temperature, concentration, and potential reactions with the coupling components.
  • Special Coatings: In some cases, using hydraulic couplings with specialized coatings or treatments can enhance their resistance to corrosion and aggressive fluids.
  • Regular Inspection and Maintenance: Implement a stringent inspection and maintenance schedule to monitor the condition of the hydraulic couplings and detect any signs of corrosion or degradation. Promptly replace any damaged or worn couplings to prevent fluid leaks and system failure.
  • Fluid Contamination: Corrosive fluids can lead to the formation of contaminants in the hydraulic system. Implement effective filtration and contamination control measures to prevent particle buildup and system damage.
  • Operating Conditions: Consider the temperature, pressure, and flow conditions of the system, as these factors can impact the corrosion resistance of the couplings and the overall system performance.

While hydraulic couplings can be used in corrosive or aggressive fluid applications, it is essential to consult with coupling manufacturers or fluid system experts to ensure proper material selection and system design. They can provide guidance on selecting the most suitable hydraulic couplings and recommend additional measures to protect the system from the adverse effects of corrosive fluids.

By employing the right materials, adopting proper maintenance practices, and taking the necessary precautions, hydraulic couplings can effectively function in applications involving corrosive or aggressive fluids, providing reliable and safe fluid power transmission.

hydraulic coupling

Are hydraulic couplings suitable for use in hydraulic cylinders or pumps?

Yes, hydraulic couplings are commonly used in hydraulic cylinders and pumps, playing a crucial role in connecting various components within hydraulic systems. Hydraulic cylinders and pumps are essential components in hydraulic systems, responsible for generating and controlling fluid power to perform mechanical work.

Hydraulic cylinders are actuators that convert fluid pressure into linear motion, producing force and movement. They are widely used in various applications, such as construction machinery, manufacturing equipment, agricultural machinery, and automotive systems.

Hydraulic pumps, on the other hand, are responsible for generating the fluid flow and pressure required to operate hydraulic systems. They provide the driving force that enables hydraulic cylinders and other actuators to perform their intended tasks.

Hydraulic couplings are used in hydraulic cylinders and pumps to connect hoses, tubes, and other hydraulic components. They ensure a secure and leak-free connection, allowing hydraulic fluid to flow between different parts of the system. Some common coupling types used in hydraulic cylinders and pumps include:

  • JIC Fittings: JIC (Joint Industry Council) fittings, which have a 37-degree flare angle, are commonly used in high-pressure hydraulic systems, including hydraulic cylinders and pumps. They provide reliable metal-to-metal sealing and are easy to assemble and disassemble.
  • ORFS Fittings: ORFS (O-Ring Face Seal) fittings are widely used in high-pressure hydraulic applications. They provide a robust and leak-free connection through an O-ring seal in the face of the fitting.
  • NPT Fittings: NPT (National Pipe Thread) fittings, with their tapered threads, are commonly used in lower-pressure hydraulic systems, providing a reliable seal with the use of thread sealants like Teflon tape.
  • BSP Fittings: BSP (British Standard Pipe) fittings, available in parallel (BSPP) and tapered (BSPT) threads, are widely used in European hydraulic systems.

Properly selected and installed hydraulic couplings ensure the integrity of the hydraulic system, allowing efficient and reliable power transmission between hydraulic cylinders, pumps, valves, and other components. When using hydraulic couplings in hydraulic cylinders and pumps, it’s essential to consider factors such as the required pressure rating, flow capacity, material compatibility, and environmental conditions to ensure optimal performance and safety.

In summary, hydraulic couplings are essential components in hydraulic systems, making them well-suited for use in hydraulic cylinders and pumps, where they facilitate fluid flow and help maintain the integrity of the overall hydraulic system.

hydraulic coupling

What are the different types of hydraulic couplings used in various industrial applications?

Hydraulic couplings come in various types and designs to suit different industrial applications. Some of the commonly used types include:

  1. Jaw Couplings: Jaw couplings are versatile and widely used in industrial machinery. They consist of two hubs with interlocking jaws that transmit torque between the shafts. These couplings provide good misalignment capacity and vibration damping.
  2. Disc Couplings: Disc couplings use a series of thin, flexible metal discs to transmit torque. They offer high torsional stiffness and can accommodate misalignments. They are commonly found in high-performance applications and precision equipment.
  3. Fluid Couplings: Fluid couplings use hydraulic fluid to transmit torque. They are suitable for applications requiring smooth start-ups and shock absorption. These couplings are often used in heavy machinery, such as conveyors and crushers.
  4. Gear Couplings: Gear couplings consist of gear teeth on the hubs that mesh with each other to transmit torque. They offer high torque capacity and can handle misalignments and shock loads. Gear couplings are commonly used in heavy-duty industrial applications.
  5. Oldham Couplings: Oldham couplings use a sliding disc in the middle to transmit torque. They provide high misalignment capacity and are used in applications where shafts are not in perfect alignment.
  6. Diaphragm Couplings: Diaphragm couplings use a thin metal diaphragm to transmit torque. They provide high torsional stiffness and can handle high speeds and misalignments. These couplings are used in applications like pumps and compressors.
  7. Beam Couplings: Beam couplings use helical cuts in a flexible beam to transmit torque. They are lightweight and have good misalignment capacity. Beam couplings are used in precision equipment and motion control applications.
  8. Universal Joints: While not a traditional hydraulic coupling, universal joints are used in fluid power transmission applications. They provide flexibility in transmitting torque at varying angles and are commonly found in drivetrains and automotive systems.

Each type of hydraulic coupling has its advantages and limitations, making them suitable for specific industrial applications based on factors like torque requirements, misalignment tolerance, and operating conditions. Proper selection and maintenance of hydraulic couplings are essential to ensure efficient power transmission and prolong the life of the machinery.

China Professional Crawler Excavator Hydraulic Excavator Spare Parts Coupling for 90h Coupling  China Professional Crawler Excavator Hydraulic Excavator Spare Parts Coupling for 90h Coupling
editor by CX 2024-05-02

China Best Sales Kipor Excavator Coupling Portable Hydraulic Track Part PC02-1AC Engine Parts

Product Description

Kipor Excavator Coupling Portable Hydraulic Track Part PC02-1AC Engine Parts

 

Basic information:
 

Parts Name Hydraulic pump Parts Number All the parts, just send the pump number to me and will check
Condition OEM/Original Delivery Within 1-3days
Inventory In stock Place Of Origin China
Packing Plastic Bag, Carton Payment Term L/C,T/T.Western Union

Parts information:

21A-60-11111 CASE SN: 10001-UP
57190-50840 BOLT SN: 10001-UP
21A-60-11120 WASHER SN: 10001-UP
07000-11008 O-RING SN: 10001-UP
21A-60-11140 TANK SN: 10001-UP
57110-8571 BOLT SN: 10001-UP
01643-50823 WASHER SN: 10001-UP
07000-05220 O-RING SN: 10001-UP
07041-13012 PLUG SN: 10001-UP
07002-03034 O-RING SN: 10001-UP
21A-60-11162 GAUGE SN: 10001-UP
20W-62-11330 NIPPLE SN: 10001-UP
705-43-06000 PUMP ASS’Y,(SEE FIG.6101) SN: 10001-UP
57110-81030 BOLT SN: 10001-UP
01643-31032 WASHER SN: 10001-UP
07000-03050 O-RING SN: 10001-UP
21A-62-12110 NIPPLE SN: 10001-UP
21A-62-12120 ELBOW SN: 10001-UP
21A-62-12130 ELBOW SN: 10001-UP
07000-12011 O-RING SN: 10001-UP
21A-62-12140 FILTER SN: 10001-UP
21A-62-12160 TUBE SN: 10001-UP
21A-62-12170 TUBE SN: 10001-UP
21A-01-13110 JOINT SN: 10001-UP
21A-01-13120 COUPLING SN: 10001-UP

 About us:

specialized in:

couplings, rubber mounts, gera parts, hydraulic seals and seal kits for hydraulic hammers, rock breakers, hydraulic excavators,wheel loaders, and JCB badkhoe loaders.

 

And, Our company also supply:

Engine parts, hydraulic piston pump and hydraulic travel motor, Swing motor assembly and hydraulic component parts, electric parts, etc. Hydraulic hammer breaker parts with piston, cylinder, chisel, through bolt, side bolt, top bush, front head bushing,accumlator, valve, etc.

We always try our best for all our customers and make it better and better. Welcome!

Products Show:

FAQ

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

What are the maintenance requirements for hydraulic couplings to ensure optimal performance?

Maintaining hydraulic couplings is crucial to ensure their optimal performance and extend their service life. Regular maintenance helps identify potential issues early on and prevents costly breakdowns. Here are the essential maintenance requirements for hydraulic couplings:

  • Inspection: Regularly inspect the hydraulic coupling for signs of wear, damage, or leaks. Check for any unusual noises, vibrations, or changes in performance during operation.
  • Lubrication: Ensure proper lubrication of the coupling’s moving parts. Use the manufacturer-recommended lubricants and follow the specified intervals for re-lubrication.
  • Coupling Alignment: Check and correct the alignment of the driving and driven shafts connected by the coupling. Misalignment can lead to premature wear and reduce coupling efficiency.
  • Bolt Tightening: Regularly check and tighten the bolts and fasteners securing the coupling. Loose bolts can lead to coupling slippage and compromised power transmission.
  • Cleanliness: Keep the hydraulic coupling and its surrounding area clean from dirt, debris, and contaminants. Clean the coupling during scheduled maintenance to prevent contamination-related issues.
  • Temperature and Pressure Checks: Monitor the operating temperature and pressure to ensure they remain within the specified limits for the coupling. Operating beyond the recommended ranges can cause damage and reduce coupling performance.
  • Overload Prevention: Avoid exceeding the rated torque capacity of the coupling to prevent overload and potential damage to the coupling or connected equipment.
  • Replacement of Worn Parts: Replace any worn or damaged components of the hydraulic coupling promptly. Follow the manufacturer’s guidelines for part replacement and use genuine spare parts when needed.
  • Periodic Maintenance: Establish a regular maintenance schedule for the hydraulic coupling based on the operating conditions and manufacturer recommendations. Adhering to this schedule helps identify and address issues before they become severe.
  • Expert Inspection: If you encounter any unusual performance issues or suspect coupling problems, consult a hydraulic system expert for a detailed inspection and analysis. They can provide valuable insights and recommendations for maintenance and repairs.

Proper and consistent maintenance of hydraulic couplings is essential to ensure their reliability, efficiency, and safe operation. By following the recommended maintenance practices, you can prolong the life of the hydraulic coupling and optimize the performance of your hydraulic system.

hydraulic coupling

Can hydraulic couplings be retrofitted into existing hydraulic systems for improved performance?

Yes, hydraulic couplings can be retrofitted into existing hydraulic systems to enhance performance, improve reliability, and address specific system requirements. Retrofitting hydraulic couplings can be a cost-effective way to upgrade older systems without the need for extensive modifications or complete replacements.

Retrofitting hydraulic couplings may be beneficial for several reasons:

  • Improved Efficiency: Upgrading to modern hydraulic couplings with better design features can reduce energy losses and improve overall system efficiency. For example, switching from older, less efficient couplings to newer, more streamlined designs can optimize fluid flow and reduce pressure drop.
  • Leak Reduction: Older hydraulic systems may experience fluid leaks due to worn-out or damaged couplings. Retrofitting with new, high-quality couplings equipped with advanced sealing technologies can significantly reduce the risk of leaks, leading to better system reliability and environmental safety.
  • Higher Pressure and Flow Capabilities: Newer hydraulic couplings may offer higher pressure and flow ratings, allowing the system to handle increased demands or heavier loads. This can be crucial for applications that require more power and performance.
  • Material Compatibility: In some cases, existing hydraulic systems may have components made from materials that are not compatible with certain hydraulic fluids. Retrofitting with appropriate couplings can ensure compatibility and prevent corrosion or other fluid-related issues.
  • Space Constraints: Modern hydraulic couplings often come in more compact designs, which can be advantageous for systems with limited space. Retrofitting with smaller couplings may allow for better system integration and improved layout.
  • Environmental Compliance: Retrofitting hydraulic couplings can help align the system with current environmental regulations and industry standards, reducing the risk of potential fines or non-compliance issues.

Before retrofitting hydraulic couplings, careful evaluation of the existing system is necessary to ensure compatibility and identify specific areas for improvement. Factors such as thread type, size, pressure rating, flow capacity, and material compatibility must be considered to select the appropriate couplings for the retrofit.

It’s essential to consult with hydraulic coupling manufacturers or experienced fluid power professionals when planning a retrofit. They can provide guidance on suitable coupling options and recommend the necessary modifications or adjustments to optimize system performance.

In conclusion, retrofitting hydraulic couplings into existing hydraulic systems can be a viable solution for enhancing performance, reducing leaks, and achieving better overall efficiency and reliability. It allows businesses to leverage the latest advancements in hydraulic coupling technology to extend the lifespan and improve the functionality of their existing hydraulic systems.

hydraulic coupling

How do you select the appropriate hydraulic coupling for specific fluid handling needs?

Selecting the right hydraulic coupling for specific fluid handling needs involves considering several critical factors to ensure optimal performance and reliability. Here’s a step-by-step guide to help you make an informed choice:

  1. Fluid Type: Identify the type of fluid that the coupling will handle. Different fluids have varying viscosities and chemical properties, which can impact the compatibility and material selection for the coupling.
  2. Operating Pressure and Temperature: Determine the maximum operating pressure and temperature that the coupling will experience. Ensure that the selected coupling is rated to handle the expected pressure and temperature levels without failure or deformation.
  3. Torque Requirements: Calculate the required torque capacity based on the power transmission needs of your system. Choose a coupling that can handle the anticipated torque while considering safety factors.
  4. Misalignment Tolerance: Evaluate the potential misalignments that may occur between the shafts in your system. Choose a coupling that offers sufficient misalignment tolerance to accommodate these variations without imposing excessive stress on the equipment.
  5. Vibration and Shock: Consider the level of vibration and shock the coupling will experience during operation. Select a coupling that can dampen vibrations and absorb shocks to protect the system components and ensure stable performance.
  6. Installation and Maintenance: Assess the ease of installation and maintenance requirements of the coupling. A well-designed coupling should be easy to install, inspect, and maintain, reducing downtime and maintenance costs.
  7. Environmental Factors: Take into account the environmental conditions in which the coupling will operate. Factors such as exposure to moisture, chemicals, dust, or extreme temperatures may affect the choice of coupling materials and coatings.
  8. Space Constraints: Consider the available space for installing the coupling. Some applications may have limited space, necessitating the use of compact or low-profile couplings.
  9. Coupling Type: Based on the above considerations, choose the most suitable coupling type for your specific fluid handling needs. Consider options such as jaw couplings, disc couplings, fluid couplings, gear couplings, or other specialized couplings based on your application requirements.

It’s essential to consult with coupling manufacturers or industry experts if you have specific or challenging application requirements. They can provide valuable insights and recommendations to ensure you select the right hydraulic coupling that meets your fluid handling needs and maximizes the efficiency and reliability of your system.

China Best Sales Kipor Excavator Coupling Portable Hydraulic Track Part PC02-1AC Engine Parts  China Best Sales Kipor Excavator Coupling Portable Hydraulic Track Part PC02-1AC Engine Parts
editor by CX 2024-04-15

China Best Sales Kipor Excavator Coupling Portable Hydraulic Track Part PC02-1AC Engine Parts

Product Description

Kipor Excavator Coupling Portable Hydraulic Track Part PC02-1AC Engine Parts

 

Basic information:
 

Parts Name Hydraulic pump Parts Number All the parts, just send the pump number to me and will check
Condition OEM/Original Delivery Within 1-3days
Inventory In stock Place Of Origin China
Packing Plastic Bag, Carton Payment Term L/C,T/T.Western Union

Parts information:

21A-60-11111 CASE SN: 10001-UP
57190-50840 BOLT SN: 10001-UP
21A-60-11120 WASHER SN: 10001-UP
07000-11008 O-RING SN: 10001-UP
21A-60-11140 TANK SN: 10001-UP
57110-8571 BOLT SN: 10001-UP
01643-50823 WASHER SN: 10001-UP
07000-05220 O-RING SN: 10001-UP
07041-13012 PLUG SN: 10001-UP
07002-03034 O-RING SN: 10001-UP
21A-60-11162 GAUGE SN: 10001-UP
20W-62-11330 NIPPLE SN: 10001-UP
705-43-06000 PUMP ASS’Y,(SEE FIG.6101) SN: 10001-UP
57110-81030 BOLT SN: 10001-UP
01643-31032 WASHER SN: 10001-UP
07000-03050 O-RING SN: 10001-UP
21A-62-12110 NIPPLE SN: 10001-UP
21A-62-12120 ELBOW SN: 10001-UP
21A-62-12130 ELBOW SN: 10001-UP
07000-12011 O-RING SN: 10001-UP
21A-62-12140 FILTER SN: 10001-UP
21A-62-12160 TUBE SN: 10001-UP
21A-62-12170 TUBE SN: 10001-UP
21A-01-13110 JOINT SN: 10001-UP
21A-01-13120 COUPLING SN: 10001-UP

 About us:

specialized in:

couplings, rubber mounts, gera parts, hydraulic seals and seal kits for hydraulic hammers, rock breakers, hydraulic excavators,wheel loaders, and JCB badkhoe loaders.

 

And, Our company also supply:

Engine parts, hydraulic piston pump and hydraulic travel motor, Swing motor assembly and hydraulic component parts, electric parts, etc. Hydraulic hammer breaker parts with piston, cylinder, chisel, through bolt, side bolt, top bush, front head bushing,accumlator, valve, etc.

We always try our best for all our customers and make it better and better. Welcome!

Products Show:

FAQ

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings be used in applications involving corrosive or aggressive fluids?

Yes, hydraulic couplings can be used in applications involving corrosive or aggressive fluids, but the choice of materials and design considerations is critical to ensure compatibility and long-term performance. Corrosive fluids, such as acids, alkalis, and certain chemicals, can pose significant challenges to hydraulic systems. Here are some key factors to consider when using hydraulic couplings in such applications:

  • Material Selection: Choose hydraulic couplings made from materials that are resistant to the specific corrosive fluid being handled. Stainless steel, certain alloys, and corrosion-resistant coatings are common choices for couplings in corrosive environments.
  • Sealing Solutions: Ensure that the couplings have effective sealing solutions to prevent fluid leakage. High-quality seals and gaskets that are compatible with the corrosive fluid are essential to maintain system integrity.
  • Chemical Compatibility: Thoroughly assess the chemical compatibility between the hydraulic fluid and the coupling materials. Consider the fluid’s temperature, concentration, and potential reactions with the coupling components.
  • Special Coatings: In some cases, using hydraulic couplings with specialized coatings or treatments can enhance their resistance to corrosion and aggressive fluids.
  • Regular Inspection and Maintenance: Implement a stringent inspection and maintenance schedule to monitor the condition of the hydraulic couplings and detect any signs of corrosion or degradation. Promptly replace any damaged or worn couplings to prevent fluid leaks and system failure.
  • Fluid Contamination: Corrosive fluids can lead to the formation of contaminants in the hydraulic system. Implement effective filtration and contamination control measures to prevent particle buildup and system damage.
  • Operating Conditions: Consider the temperature, pressure, and flow conditions of the system, as these factors can impact the corrosion resistance of the couplings and the overall system performance.

While hydraulic couplings can be used in corrosive or aggressive fluid applications, it is essential to consult with coupling manufacturers or fluid system experts to ensure proper material selection and system design. They can provide guidance on selecting the most suitable hydraulic couplings and recommend additional measures to protect the system from the adverse effects of corrosive fluids.

By employing the right materials, adopting proper maintenance practices, and taking the necessary precautions, hydraulic couplings can effectively function in applications involving corrosive or aggressive fluids, providing reliable and safe fluid power transmission.

hydraulic coupling

How do hydraulic couplings compare to other coupling types, such as mechanical or magnetic couplings?

Hydraulic couplings, mechanical couplings, and magnetic couplings are three distinct types of couplings used in various applications to transmit power between shafts. Each type of coupling offers specific advantages and limitations, making them suitable for different scenarios. Here’s a comparison of hydraulic couplings with mechanical and magnetic couplings:

  • Power Transmission:
    • Hydraulic Couplings: Hydraulic couplings transmit power using hydraulic fluid to transfer torque between connected shafts. They are well-suited for applications with varying torque demands, as the fluid medium can accommodate fluctuations and dampen shock loads.
    • Mechanical Couplings: Mechanical couplings directly connect the shafts through solid mechanical links, such as rigid couplings or flexible couplings (e.g., gear, jaw, or disc couplings). They efficiently transmit power without losses, making them suitable for high-torque applications.
    • Magnetic Couplings: Magnetic couplings use magnetic fields to transfer torque between shafts. They offer non-contact power transmission, which eliminates the need for mechanical seals, making them suitable for applications requiring hermetic sealing, such as pumps handling hazardous fluids.
  • Speed and Torque:
    • Hydraulic Couplings: Hydraulic couplings can accommodate variations in speed and torque within their design limits. They offer good torque-to-inertia ratio, enabling smooth acceleration and deceleration in hydraulic systems.
    • Mechanical Couplings: Mechanical couplings maintain precise shaft alignment and have high torque capacity. However, they may not handle speed variations as effectively as hydraulic couplings.
    • Magnetic Couplings: Magnetic couplings are not suitable for high-torque applications, but they offer excellent speed control and precise torque transmission without direct contact between shafts.
  • Maintenance and Wear:
    • Hydraulic Couplings: Hydraulic couplings may require periodic maintenance, such as seal replacements, to ensure proper operation. They experience wear due to fluid flow and pressure.
    • Mechanical Couplings: Mechanical couplings have mechanical wear and may require lubrication and maintenance to sustain optimal performance and prevent misalignment over time.
    • Magnetic Couplings: Magnetic couplings have minimal wear and require less maintenance due to their non-contact nature. They are less prone to mechanical failures but may require magnetic field adjustments.
  • Environmental Considerations:
    • Hydraulic Couplings: Hydraulic couplings may require hydraulic fluid, which must be properly managed and maintained. They can be susceptible to fluid leakage if not adequately sealed.
    • Mechanical Couplings: Mechanical couplings can generate friction and heat during operation, which may require cooling measures in high-speed applications.
    • Magnetic Couplings: Magnetic couplings are hermetically sealed, preventing fluid leakage and offering environmental advantages in applications where containment is critical.

The selection of the most appropriate coupling type depends on the specific requirements of the application, including torque, speed, environmental factors, maintenance considerations, and cost. Each coupling type offers unique features that cater to diverse industrial needs, making them valuable components in numerous mechanical systems.

hydraulic coupling

How do hydraulic couplings accommodate misalignment and prevent overload during operation?

Hydraulic couplings are designed to accommodate misalignment and prevent overload during operation, ensuring smooth and efficient power transmission. Here’s how they achieve this:

  1. Misalignment Accommodation: Hydraulic couplings can handle different types of misalignment between the driving and driven shafts. This includes angular misalignment, radial misalignment, and axial misalignment. The design of the coupling allows it to flex and compensate for these misalignments, reducing stress on the system components and preventing premature wear.
  2. Torsional Flexibility: Hydraulic couplings offer torsional flexibility, which means they can twist and absorb torsional vibrations that may occur during operation. This capability helps to dampen vibrations and reduce the impact of shock loads on the system, enhancing the overall performance and protecting sensitive components.
  3. Slip Mechanism: In applications where overload protection is critical, some hydraulic couplings feature a slip mechanism. When the torque exceeds a certain threshold, the coupling slips, disengaging the driving and driven elements. This slip mechanism prevents damage to the system and its components by acting as a safety feature under high-load conditions.
  4. Hydraulic Fluid Damping: The hydraulic fluid present in the coupling acts as a damping medium. When torque is transmitted from the driving element to the driven element, the fluid dampens the transmission of vibrations, providing a smoother and quieter operation while reducing wear and tear.
  5. Gradual Start-up: During system start-up, hydraulic couplings provide gradual power transmission. As the fluid flow builds up and pressure increases, the coupling gradually engages, minimizing the shock and stress on the system. This gradual start-up is particularly beneficial for systems with heavy loads and delicate components.
  6. Continuous Power Transmission: Hydraulic couplings maintain continuous power transmission even when there are slight misalignments or variations in operating conditions. The ability to accommodate misalignments and fluctuations in torque allows the system to operate reliably and efficiently over time.

By accommodating misalignments, damping vibrations, and providing overload protection, hydraulic couplings ensure the smooth and reliable operation of hydraulic systems. Their versatility and adaptability make them suitable for a wide range of industrial applications, where precision, efficiency, and protection against shock loads are essential requirements.

China Best Sales Kipor Excavator Coupling Portable Hydraulic Track Part PC02-1AC Engine Parts  China Best Sales Kipor Excavator Coupling Portable Hydraulic Track Part PC02-1AC Engine Parts
editor by CX 2024-04-12

China Custom 951572 40 95157240 Hydraulic Pump Coupling Element Coupling for PC1000 PC2000 PC3000 PC4000 PC1250 Excavator Parts

Product Description

957240 Hydraulic Pump Coupling Element Coupling for PC1000 PC2000 PC3000 PC4000 PC1250 Excavator Parts

 9571240 PC1000 Valve Block Assembly Information

Product name 95157240 PC1000 Coupling
Model NO. PC1000,PC2000 PC3000
Fit brand KOMATS-U
Part number 9571240 PC1000
Color As per standard color
Fit equipment Volvo;Excavator
Application Construction works,resell;Volvo
Section code Working hydraulics / Main control valve, boom and bucket and travel
Section code Working hydraulics 
Type Hydraulic control valve seal kit
Payment terms L/C, D/A, D/P, T/T, Western Union, MoneyGram
Packaging Nuetral packaging or OEM packaging
Shipping mode By air, by sea, by express
By express Post FedEx , UPS,DHL,TNT etc
Forwarder Your local forwarder or we find for you
Quality Stable quality,OEM standard,Genuine/Aftermarket
Loading port Xihu (West Lake) Dis. port,China

More other KOMATS-U CATALOG we can provide

9571440 TERMINAL 9571140 UNION
9571540 SEAL, FLANGE 9571640 HYDRALIC MOT
9571640 SEALK 9571940 BUFFER RING
9571840 SEAL 9571540 SWITCH, PRES
9571440 AIR CLEANER 9571940 HOSE
9571340 CABLE 1=1 ME 9571040 HOSE
9571040 UNION 9571140 COUPLING
9571240 VALVE 9571240 COUPLING
9571440 INDICATOR 9571340 T-DISTRIBUTO
9571540 FLUID LEVEL 9571840 VALVE, BLOCK
9571640 VALVE 9571940 CONTROL BLOC
9571840 GUAGE OIL LE 9571040 VALVE BLOCK
9571940 GUAGE, OIL 9571140 VALVE BLOCK
9571040 CLIP, HOSE 9571240 VALVE BLOCK
9571140 GENERATOR24V 9571340 SENDING UNIT
9571340 HEATER 9571640 BLOCK, CONTR
9571540 CONVERTER 9571840 EXTINGUISHER
9571640 CONVERTER 9571040 CAMSWITCH
9571440 INDICATOR 9571140 CLIP
9571540 GASKET 9571240 CLIP, HOSE
9571640 GASKET 9571340 HOSE 1=1 MET
9571740 SEAL 9571440 HOSE PROTECT
9571840 SEAL 9571540 SEAT, FOLDIN
9571940 RING 9571840 HOSE
9571040 SEAL 9 0571 040 HOSE
9571140 RING 9 0571 140 HOSE
90765710 O-RING 9571640 HOSE
9571340 O-RING 9571940 SEAL
9571440 INDICATOR 90780440 HOSE PROTECT
90761740 UNION 9571540 VALVE
90761840 SWITCH, MAIN 9571640 VALVE
9 0571 140 VALVE, ANTIC 9571740 VALVE
9 0571 240 PUMP, PILOT 9571840 PUMP
9 0571 440 GROMMET 90761440 FAN
90765040 LUBE STATION 9 0571 140 CABLE
90765140 TEMP. SENSOR 9 0571 440 FILTER
90765340 TUBING P60 1 9 0571 540 BUTTON
90765740 ROD SEAL 9 0571 640 RING
90765840 RING 9 0571 740 DUST SEAL
9 0571 240 HOSE 1=1 MET 9 0571 840 ROD SEAL
9 0571 440 SOCKET 9 0571 940 BUFFER RING
9 0571 540 ELBOW 90767040 SWITCH
9 0571 640 ELBOW 90767240 SWITCH
9 0571 840 ELBOW 90767540 ADAPTER
9 0571 240 FITTING 90767840 LUB PUMP STA
9 0571 340 FITTING 957140 CLAMP
9 0571 740 TEMPERATURSE 9 0571 840 CABLE
9 0571 340 CABLE 9 0571 940 CABLE GLAND
9 0571 440 UNION 9571040 FITTING
9 0571 540 CABLE UNION 9 0571 740 CABLE

More other Control Blocks we can provide

KOBELCO SK60 SK70 SK75 SK07-N2 SK07/2/7
SK100 SK120-3-5-6 SK125 SK160 SK200-1-3-5-6-8
SK210 SK220-3-6 SK230 SK250 SK260
SK300-3-6 SK320 SK330 SK400 SK450
DAEWOO DH55 DH60 DH80 DH130 DH150
DH200 DH220 DH215 DH220 DH258
DH280 DH300 DH360 DH370-9 DH400
DH420 DH500 UH07 K907C  
HYUNDAI R60 R80 R130-5-7 R150 R200
R200-5 R210 R210-7 R215-7 R220-5
R225-7 R260-5 R265 R290 R300-5
R305 R320 R385 R420 R450-3-5
VOLVO EC55B EC140B EC210 EC240 EC290B
EC290B PRIME EC360 EC460 EC700  
KKUBOTA U10 U20 U25 KX35 KX50
KX61-2/-3 KX71-2/-3 KX85 KX135 KX155
KX161 KX121      
YUCHAI YC35 YC60 YC85 YC135  
YANMAR YM55 YM75      
SAMSUNG SE210LC SE210LC SE210LC SE210LC SE210LC
BOBCA-T E10 E14 E17 X320 X320
TAKEUCHI TB108 TB016 TB125 TB145 TB250
MITSUBISH MS110/MS120 MS180 MS230 MS280  
LOADER 980C 966D 950E 950C 936E
KOMATS-U PC20 PC30 PC35 PC40 PC45
PC60-1-3-5-6-7 PC75 PC100-3-5 PC120-3-5 PC150
PC200-1-3-5-6-7-8 PC220-1-3-5-6 PC300-1-3-5-6-7 PC350 PC400-3-5-6
CA-TERPILLAR E55/E55B E70/E70B E110/E110B E120/E120B E180
E215 E225DLC E235 E240 E300B
E307 E300J E305 E311/E312 E320/E200B
E322 E324 E325 E330 E339
E345 E450      
HITACHI EX30 EX40 EX55 EX60-1-2-3-5 EX70
EX100-1-3 EX120-1-3-5 EX150 EX200-1-2-3-5-8 EX220
EX230 EX270 EX300-1-2-3-5-6 EX400-1-2-3-5 EX600
UH043 UH052 UH053 UH07 UH081
UH082 UH083 ZAXIS 60 ZAXIS 200-3-6 ZAXIS 240
ZAXIS 270 ZAXIS 330 ZAXIS 360 ZAXIS 450 ZAXIS 870
ZAXIS 110 ZAXIS 120      
BULLDOZER D20 D3 D30 D31 D3L
D3C D37 D3D D4C D40
D4D D4H D41 D45 D50/D5/D5B
D53/D57/D58 D60/D65 D6D/D6 D6C D6H
D65=D85ESS-2 D75 D7G/D7 D80/D85 D85A-12
D8K D8N D9N D135 D150
D155 D255      
KATO HD80 HD140 HD250 HD400(HD450) HD550
HD700(HD770) HD820(HD850) HD880 HD900 HD1571
HD1220 HD1250 HD1430 HD2053  
SUMITOMO SH60 SH70 SH100 SH120 SH200
SH210 SH220 SH280 SH300 SH320
SH350 SH360 SH400 SH450 SH460
LS2800FJ S340 S430    

Our Main Products

If you have other breaker spare parts demand,such as Travel Motor,Travel Gearbox,Travel Device,Final Drive,Swing Motor,Swing Gearbox,Swing Motor Assy,Swing Device,Hydraulic Pump,Engine,Hydraulic Gear Pump,Piston Shoes,Cylnder Block,Valve Plate,Arm CYL’ Seal,Boom CYL’ Seal,Bucket CYL’ Seal, Bucket,Teeth,Track Roller,Top Roller,Spocket,Track Link,Monitor,Controller,etc,please click the below picture for more information,we believe we can save much of your timeand be your ONE STOP supplier.

Applicable To Excavator Model Number

Komats*u PC56-7 PC60-8 PC70-8 PC110-7 PC130-7 PC160-7 PC200-7 PC200-8 PC200LC-8 PC210-8 PC210LC-8
PC220-8 PC240LC-8 HB205-1 HB215LC-1
PC270-7 PC300-7 PC360-7 PC400-8 PC450-8 OTHERS
Kobelco SK130-8 SK135-8 SK140-8 SK200-6 SK200-8 SK210-8 SK250-8 SK260LC-9 SK330-6 SK200-6E SK250-6E
SK230-6E SK330 SK350-6E SK350-8 SK55SR-5 SK55SRX SK60-C SK60-8 SK70SR-2 SK75-8 SK130 SK135SR-2 SK140LC SK140LC-8 SK210LC-8 SK250-8
SK260LC-8 SK270D SK330-8 SK350LC-8 SK380D SK460-8 SK480 SK480-8 SK495D SK850LC OTHERS
Doosan DH85 DH150W DH215-9 DH220-5 DH220-7 DH225-7 DH225-9 DH258-7 DH300-V DH360 DH300LC-7 DX260 DH370 DH420 DH55 DX60 DH60-7 DX75 DX80
DX120 DX150LC DH150LC-7 DH215-9 DH215-9E DH220LC-9E DH225LC-9 DX260LC DX300LC DH300LC-7 DX345LC DH370LC-9 DX380LC DX420LC
DH420LC-7 DX500LC DH500LC-7 DX700LC
Kobuto KX71-2 KX71-3 KX61-2 KX71 KX61 KX91.3
Hitachi EX35 ZX30CLR EX30.2
Daewood 130 150
Sumitomo SH200 SH200-1 SH 200-2 SH200-Z3 SH200-A3 SH240-A5 SH350-3 SH350 SH360 SH365
Jacob JCB200 JCB210 JCB220 JCB240 JCB802.7
CASE CX210B CX240B CK25 CX350 CX365 CX360
Yanmar B25 B25V B37V VIQ30 B22
SAN*Y SY65 SY75 SY135 SY215 SY215-8 SY205-8 SY215-8S SY205-9 SY215-9 SY235-8 SY245 SY305 SY285
SY335 SY365 SY375 SY385 SY465 SY700 SY485H
XCM*G XCMG160D XCMG200DA XCMG250 XCMG260 XCMG370 XCMG470

We could supply the following Excavator spare parts

Engine Assembly Final Drive Assy Hydraulic Pump Gear Pump
Swing Motor Travel Motor Fan Motor Electrical Parts
Swing Gearbox Travel Gearbox Relief Valve Distribution Valve
Front Idler Adjust Cylinder Carrier Roller Spocket
Track Roller Track Shoe Track Link Excavator Track Assy
Teeth/Tooth Adaptor/Teeth Seat Muffler Bucket

Our Company–Xihu (West Lake) Dis.an Machinery/KoKo Shop

Koko Shop Machine Co.,Ltd(EBSeals) is aprofessional supplier for hydraulic breaker parts and excavator parts and OEM hydraulic seals manufacturer. We specialize in completed seal kits and separate seals for hydraulic breaker and excavator more than Ten years in HangZhou,China.Koko Shop supplyal most all brands breakers’parts like Seal kits,Diaphragm,Piston,Chisel,Wear Bush upper and lower,Rod Pin,Through Bolts,Side Bolts,Control Valve,Front Head,Cylinder,Accumulator,N2 GasCharging Kit,etc.We insiston high quality partswith genuineand OEM CHINAMFG replacement parts.

Our Advantages

1 Excavator spare parts in full scale are available;
2 100% quality assurance,developand manufacture follow original ones;
3 Quickre sponse within 24 hours;
4 Small order allowed;
5 Reasonable stock and timely delivery;
6 Original packing,neutral packing or customized packing;
7 Positive customer feedback froma broad market;
8 Excellent Aftersales service.

FAQ

Q1. How many days for the delivery time ?
It is about 1-7 working days after the order confirmation.
 
Q2. What kind of payments you accept?
Now we accept T/T,L/C or Western Union,other terms also could be negotiated,Recommended Trade Assurance to guarantee buyer’s property.
 
Q3. Are you able to manufacturing products according to customer’s design?
Sure,we have made many special orders from oversea for 10 years since 2571. So we have enough ability to deal with any cases. OEM certificate is available to provided.
 
Q4. What’s your advantages in the machinery manufacturing industry?
Fast delivery time,High quality products,Best customer service,Adopting the latest production technology.
 
Q5. Which countries have you been exported recently?
Canada,Australia,Peru,Egypt,Brazil,Mexico,South Africa,etc.
 
Q6. Are you sure that your product will suit for our excavator?
We have different brand hydraulic breakers. Show me your model number,and we can give you best match products.
 
Q7. How about the packing of the goods?
Standard export package,wood cases,or as customers’ demands.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

How do hydraulic couplings contribute to reducing vibrations and noise in hydraulic systems?

Hydraulic couplings play a crucial role in reducing vibrations and noise in hydraulic systems, providing several mechanisms that help dampen and absorb these unwanted effects. Here’s how hydraulic couplings contribute to vibration and noise reduction:

  • Torsional Flexibility: Hydraulic couplings are designed with torsional flexibility, allowing them to twist and absorb torsional vibrations that may occur during operation. As the fluid flows through the coupling, it acts as a damping medium, attenuating vibrations and minimizing their transmission to the rest of the system.
  • Vibration Isolation: The inherent flexibility of hydraulic couplings helps isolate vibrations between the driving and driven components of the hydraulic system. This isolation prevents vibrations from propagating through the system, reducing the overall vibration levels and promoting smoother operation.
  • Shock Absorption: In systems subject to sudden changes in load or pressure, hydraulic couplings can act as shock absorbers. They cushion the impact of these shock loads, preventing them from reverberating through the system and causing noise or damage to sensitive components.
  • Damping Characteristics: Hydraulic couplings, especially those utilizing a hydraulic fluid medium, exhibit excellent damping characteristics. The fluid dissipates energy by converting kinetic energy into heat energy, effectively reducing the system’s resonant vibrations and noise.
  • Smooth Power Transmission: Hydraulic couplings provide smooth power transmission between the driving and driven elements. The absence of jerks or sudden changes in torque helps in minimizing vibrations and noise generation, leading to quieter operation.
  • Compensation for Misalignments: Hydraulic couplings can compensate for certain misalignments between the shafts they connect. By accommodating misalignments, the couplings reduce the stress on the system components, mitigating vibrations that might arise from misalignment-induced forces.
  • Elimination of Metal-to-Metal Contact: In certain couplings, the use of elastomeric or flexible elements eliminates direct metal-to-metal contact between the driving and driven shafts. This reduces transmission of vibrations and noise, resulting in a quieter system.

By incorporating these vibration and noise-reducing features, hydraulic couplings enhance the overall performance and longevity of hydraulic systems. They contribute to a more pleasant working environment by minimizing noise levels and reducing the risk of fatigue failure caused by excessive vibrations. Additionally, reduced vibrations help prevent premature wear and extend the lifespan of system components, ultimately leading to cost savings and improved efficiency in industrial applications.

hydraulic coupling

How do hydraulic couplings ensure efficient torque transmission and prevent fluid leaks?

Hydraulic couplings are designed with specific features to ensure efficient torque transmission and prevent fluid leaks, making them vital components in hydraulic systems. These features contribute to the overall performance and reliability of the hydraulic system. Here’s how hydraulic couplings achieve these goals:

  • High-Quality Materials: Hydraulic couplings are manufactured using high-quality materials, such as steel, stainless steel, brass, or other durable alloys. These materials offer excellent strength and wear resistance, allowing the couplings to withstand high torque and pressure loads without deforming or leaking.
  • Precision Machining: Hydraulic couplings undergo precise machining processes to achieve tight tolerances and smooth surfaces. This ensures proper alignment and mating of coupling components, minimizing energy losses and enhancing torque transmission efficiency.
  • Sealing Mechanisms: Hydraulic couplings incorporate various sealing mechanisms to prevent fluid leaks. O-rings, seals, or face seals are common sealing methods used in hydraulic couplings. When the coupling components are connected, the seals create a secure barrier, preventing hydraulic fluid from escaping the system.
  • Leak-Free Designs: Modern hydraulic couplings often feature leak-free designs that minimize the risk of fluid leakage during operation. These designs utilize advanced sealing technologies and tight tolerances to ensure a reliable and durable connection, even under high-pressure conditions.
  • Threaded Connections: Many hydraulic couplings use threaded connections, such as NPT, BSP, JIC, or SAE threads, to create a secure and leak-resistant joint. Properly tightened threaded connections maintain the integrity of the hydraulic system, reducing the likelihood of leaks.
  • Quick-Connect Couplings: Quick-connect hydraulic couplings are designed for rapid and easy connection and disconnection, often without the need for additional tools. These couplings use internal valves and seals to ensure a leak-free connection when engaged and prevent fluid leaks when disengaged.
  • Hermetically Sealed Couplings: In specific applications, hermetically sealed hydraulic couplings use magnetic coupling technology to provide a non-contact, leak-free transmission of torque and power. These couplings have no physical contact points, making them suitable for critical environments or systems handling hazardous fluids.

The combination of these design features ensures that hydraulic couplings efficiently transmit torque from one component to another while maintaining a secure and reliable seal to prevent fluid leaks. This is particularly important in hydraulic systems, where fluid leakage can lead to reduced performance, increased maintenance, and potential safety hazards.

Proper selection, installation, and maintenance of hydraulic couplings are crucial to optimize their torque transmission capabilities and prevent fluid leaks. Regular inspections and replacement of worn-out seals or damaged couplings are essential to ensure the continued efficiency and safety of the hydraulic system.

In summary, hydraulic couplings play a crucial role in efficient torque transmission and fluid sealing in hydraulic systems. Their robust construction, precision engineering, and advanced sealing technologies contribute to the overall performance and reliability of hydraulic machinery and equipment.

hydraulic coupling

Can you explain the working principle of a hydraulic coupling and its advantages over other coupling types?

A hydraulic coupling operates based on the principle of hydraulic fluid transmission to transfer power from one shaft to another. It consists of two main parts: the input (driving) element and the output (driven) element, both of which have specially designed vanes or blades submerged in hydraulic fluid.

When the input element rotates, it creates a flow of hydraulic fluid around the vanes. The fluid flow generates pressure on the output element, causing it to start rotating. This pressure difference between the input and output elements facilitates the transfer of torque and power from the driving shaft to the driven shaft.

The working principle of a hydraulic coupling allows it to accommodate misalignments and torsional vibrations. It effectively isolates shock loads, provides overload protection, and dampens vibrations, making it ideal for various industrial applications.

Advantages of hydraulic couplings over other coupling types include:

  1. Misalignment Tolerance: Hydraulic couplings can handle significant shaft misalignments, reducing wear and tear on the system and prolonging the life of the components. Other coupling types may have limitations in this regard.
  2. Vibration Damping: Hydraulic couplings can effectively dampen vibrations, preventing damage to connected equipment and promoting smoother operation. This advantage is especially critical in precision machinery and applications where vibrations can affect accuracy and performance.
  3. Overload Protection: Hydraulic couplings offer built-in overload protection. When the torque exceeds a certain threshold, the fluid coupling slips or disengages, preventing damage to the system and its components. Other coupling types may not have this automatic overload protection.
  4. Smooth Start-up: Hydraulic couplings provide gradual power transmission during start-up, which helps minimize shock and stress on the system. This feature is beneficial for systems with heavy loads or delicate components.
  5. Quiet Operation: Due to their vibration-damping properties, hydraulic couplings contribute to quieter operation, reducing noise levels in the machinery compared to some other coupling types.
  6. Wide Range of Applications: Hydraulic couplings are suitable for a wide range of industrial applications, including heavy machinery, mining equipment, conveyors, pumps, and more. Their adaptability and robust performance make them a popular choice in various industries.

While hydraulic couplings offer many advantages, the selection of the appropriate coupling type ultimately depends on the specific requirements of the application, such as torque, speed, misalignment, and environmental conditions. Properly choosing and maintaining the coupling can significantly improve the efficiency, reliability, and overall performance of fluid power transmission systems in industrial settings.

China Custom 951572 40 95157240 Hydraulic Pump Coupling Element Coupling for PC1000 PC2000 PC3000 PC4000 PC1250 Excavator Parts  China Custom 951572 40 95157240 Hydraulic Pump Coupling Element Coupling for PC1000 PC2000 PC3000 PC4000 PC1250 Excavator Parts
editor by CX 2024-02-14

China Best Sales Hcw00001-up Excavator Coupling Flexible Natural Rubber Hydraulic Parts 2666280

Product Description

HCW
 

Basic information:

 

Material Genuine material
Feature 1) One-stop Shopping Experience
2) Different Quality Level for Customers to Choose
3) Full Excavator Parts Product Lines
Classification Construction Machinery Parts; Excavator Parts
OEM service Yes
Payment T/T, Western Union, etc.
Port HangZhou
Quotation Based on OEM parts or genuine parts, packing, quantity andother requirements
MOQ For many products, we don’t have MOQ limited.
Application Excavator

 About us:

specialized in:

couplings, rubber mounts, gera parts, hydraulic seals and seal kits for hydraulic hammers, rock breakers, hydraulic excavators,wheel loaders, and JCB badkhoe loaders.

 

And, Our company also supply:

Engine parts, hydraulic piston pump and hydraulic travel motor, Swing motor assembly and hydraulic component parts, electric parts, etc. Hydraulic hammer breaker parts with piston, cylinder, chisel, through bolt, side bolt, top bush, front head bushing,accumlator, valve, etc.

We always try our best for all our customers and make it better and better. Welcome!

Products Show:

FAQ

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings be used in applications involving corrosive or aggressive fluids?

Yes, hydraulic couplings can be used in applications involving corrosive or aggressive fluids, but the choice of materials and design considerations is critical to ensure compatibility and long-term performance. Corrosive fluids, such as acids, alkalis, and certain chemicals, can pose significant challenges to hydraulic systems. Here are some key factors to consider when using hydraulic couplings in such applications:

  • Material Selection: Choose hydraulic couplings made from materials that are resistant to the specific corrosive fluid being handled. Stainless steel, certain alloys, and corrosion-resistant coatings are common choices for couplings in corrosive environments.
  • Sealing Solutions: Ensure that the couplings have effective sealing solutions to prevent fluid leakage. High-quality seals and gaskets that are compatible with the corrosive fluid are essential to maintain system integrity.
  • Chemical Compatibility: Thoroughly assess the chemical compatibility between the hydraulic fluid and the coupling materials. Consider the fluid’s temperature, concentration, and potential reactions with the coupling components.
  • Special Coatings: In some cases, using hydraulic couplings with specialized coatings or treatments can enhance their resistance to corrosion and aggressive fluids.
  • Regular Inspection and Maintenance: Implement a stringent inspection and maintenance schedule to monitor the condition of the hydraulic couplings and detect any signs of corrosion or degradation. Promptly replace any damaged or worn couplings to prevent fluid leaks and system failure.
  • Fluid Contamination: Corrosive fluids can lead to the formation of contaminants in the hydraulic system. Implement effective filtration and contamination control measures to prevent particle buildup and system damage.
  • Operating Conditions: Consider the temperature, pressure, and flow conditions of the system, as these factors can impact the corrosion resistance of the couplings and the overall system performance.

While hydraulic couplings can be used in corrosive or aggressive fluid applications, it is essential to consult with coupling manufacturers or fluid system experts to ensure proper material selection and system design. They can provide guidance on selecting the most suitable hydraulic couplings and recommend additional measures to protect the system from the adverse effects of corrosive fluids.

By employing the right materials, adopting proper maintenance practices, and taking the necessary precautions, hydraulic couplings can effectively function in applications involving corrosive or aggressive fluids, providing reliable and safe fluid power transmission.

hydraulic coupling

How do hydraulic couplings compare to other coupling types, such as mechanical or magnetic couplings?

Hydraulic couplings, mechanical couplings, and magnetic couplings are three distinct types of couplings used in various applications to transmit power between shafts. Each type of coupling offers specific advantages and limitations, making them suitable for different scenarios. Here’s a comparison of hydraulic couplings with mechanical and magnetic couplings:

  • Power Transmission:
    • Hydraulic Couplings: Hydraulic couplings transmit power using hydraulic fluid to transfer torque between connected shafts. They are well-suited for applications with varying torque demands, as the fluid medium can accommodate fluctuations and dampen shock loads.
    • Mechanical Couplings: Mechanical couplings directly connect the shafts through solid mechanical links, such as rigid couplings or flexible couplings (e.g., gear, jaw, or disc couplings). They efficiently transmit power without losses, making them suitable for high-torque applications.
    • Magnetic Couplings: Magnetic couplings use magnetic fields to transfer torque between shafts. They offer non-contact power transmission, which eliminates the need for mechanical seals, making them suitable for applications requiring hermetic sealing, such as pumps handling hazardous fluids.
  • Speed and Torque:
    • Hydraulic Couplings: Hydraulic couplings can accommodate variations in speed and torque within their design limits. They offer good torque-to-inertia ratio, enabling smooth acceleration and deceleration in hydraulic systems.
    • Mechanical Couplings: Mechanical couplings maintain precise shaft alignment and have high torque capacity. However, they may not handle speed variations as effectively as hydraulic couplings.
    • Magnetic Couplings: Magnetic couplings are not suitable for high-torque applications, but they offer excellent speed control and precise torque transmission without direct contact between shafts.
  • Maintenance and Wear:
    • Hydraulic Couplings: Hydraulic couplings may require periodic maintenance, such as seal replacements, to ensure proper operation. They experience wear due to fluid flow and pressure.
    • Mechanical Couplings: Mechanical couplings have mechanical wear and may require lubrication and maintenance to sustain optimal performance and prevent misalignment over time.
    • Magnetic Couplings: Magnetic couplings have minimal wear and require less maintenance due to their non-contact nature. They are less prone to mechanical failures but may require magnetic field adjustments.
  • Environmental Considerations:
    • Hydraulic Couplings: Hydraulic couplings may require hydraulic fluid, which must be properly managed and maintained. They can be susceptible to fluid leakage if not adequately sealed.
    • Mechanical Couplings: Mechanical couplings can generate friction and heat during operation, which may require cooling measures in high-speed applications.
    • Magnetic Couplings: Magnetic couplings are hermetically sealed, preventing fluid leakage and offering environmental advantages in applications where containment is critical.

The selection of the most appropriate coupling type depends on the specific requirements of the application, including torque, speed, environmental factors, maintenance considerations, and cost. Each coupling type offers unique features that cater to diverse industrial needs, making them valuable components in numerous mechanical systems.

hydraulic coupling

How do you select the appropriate hydraulic coupling for specific fluid handling needs?

Selecting the right hydraulic coupling for specific fluid handling needs involves considering several critical factors to ensure optimal performance and reliability. Here’s a step-by-step guide to help you make an informed choice:

  1. Fluid Type: Identify the type of fluid that the coupling will handle. Different fluids have varying viscosities and chemical properties, which can impact the compatibility and material selection for the coupling.
  2. Operating Pressure and Temperature: Determine the maximum operating pressure and temperature that the coupling will experience. Ensure that the selected coupling is rated to handle the expected pressure and temperature levels without failure or deformation.
  3. Torque Requirements: Calculate the required torque capacity based on the power transmission needs of your system. Choose a coupling that can handle the anticipated torque while considering safety factors.
  4. Misalignment Tolerance: Evaluate the potential misalignments that may occur between the shafts in your system. Choose a coupling that offers sufficient misalignment tolerance to accommodate these variations without imposing excessive stress on the equipment.
  5. Vibration and Shock: Consider the level of vibration and shock the coupling will experience during operation. Select a coupling that can dampen vibrations and absorb shocks to protect the system components and ensure stable performance.
  6. Installation and Maintenance: Assess the ease of installation and maintenance requirements of the coupling. A well-designed coupling should be easy to install, inspect, and maintain, reducing downtime and maintenance costs.
  7. Environmental Factors: Take into account the environmental conditions in which the coupling will operate. Factors such as exposure to moisture, chemicals, dust, or extreme temperatures may affect the choice of coupling materials and coatings.
  8. Space Constraints: Consider the available space for installing the coupling. Some applications may have limited space, necessitating the use of compact or low-profile couplings.
  9. Coupling Type: Based on the above considerations, choose the most suitable coupling type for your specific fluid handling needs. Consider options such as jaw couplings, disc couplings, fluid couplings, gear couplings, or other specialized couplings based on your application requirements.

It’s essential to consult with coupling manufacturers or industry experts if you have specific or challenging application requirements. They can provide valuable insights and recommendations to ensure you select the right hydraulic coupling that meets your fluid handling needs and maximizes the efficiency and reliability of your system.

China Best Sales Hcw00001-up Excavator Coupling Flexible Natural Rubber Hydraulic Parts 2666280  China Best Sales Hcw00001-up Excavator Coupling Flexible Natural Rubber Hydraulic Parts 2666280
editor by CX 2024-02-12